update the main doc and add a developer doc (#321)

* update the main doc and add a developer doc

* add it back

* fix some typo

* Update README.md

Co-authored-by: Nat Kershaw (MSFT) <nakersha@microsoft.com>

Co-authored-by: Nat Kershaw (MSFT) <nakersha@microsoft.com>
This commit is contained in:
Wenbing Li 2022-12-02 16:27:58 -08:00 коммит произвёл GitHub
Родитель 77bddf6419
Коммит 0647ce6d14
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
8 изменённых файлов: 158 добавлений и 207 удалений

Просмотреть файл

@ -367,7 +367,7 @@ jobs:
displayName: Setup emscripten pipeline
- script: |
sh ./build.sh \
bash ./build.sh \
-DCMAKE_TOOLCHAIN_FILE=$(Build.BinariesDirectory)/emsdk/upstream/emscripten/cmake/Modules/Platform/Emscripten.cmake \
-DOCOS_ENABLE_SPM_TOKENIZER=ON \
-DOCOS_BUILD_PYTHON=OFF \

249
README.md
Просмотреть файл

@ -1,194 +1,38 @@
# ONNX Runtime Extensions
# ONNXRuntime-Extensions
[![Build Status](https://aiinfra.visualstudio.com/Lotus/_apis/build/status/onnxruntime-extensions/extensions.wheel?branchName=main)](https://aiinfra.visualstudio.com/Lotus/_build/latest?definitionId=1085&branchName=main)
## Introduction
## What's ONNXRuntime-Extensions
ONNX Runtime Extensions is library that extends the capability of the ONNX conversion and inference with ONNX Runtime.
Introduction: ONNXRuntime-Extensions is a library that extends the capability of the ONNX models and inference with ONNX Runtime, via ONNXRuntime Custom Operator ABIs. It includes a set of [ONNXRuntime Custom Operator](https://onnxruntime.ai/docs/reference/operators/add-custom-op.html) to support the common pre- and post-processing operators for vision, text, and nlp models. And it supports multiple languages and platforms, like Python on Windows/Linux/macOS, some mobile platforms like Android and iOS, and Web-Assembly etc. The basic workflow is to enhance a ONNX model firstly and then do the model inference with ONNXRuntime and ONNXRuntime-Extensions package.
1. A library of common pre and post processing operators for vision, text, and nlp models for [ONNX Runtime](http://onnxruntime.ai) built using the ONNX Runtime CustomOp API.
<table>
<tr>
<td>⚠️</td>
<td>
<strong>NOTE:</strong> most ONNXRuntime-Extensions packages are in <strong><em>active development</em></strong> and most packages require building from source. The package information will be updated here if it is published.
</td>
</tr>
</table>
2. A model augmentation API to integrate the pre and post processing steps into an ONNX model
3. The python operator feature that implements a custom operator with a Python function and can be used for testing and verification
4. A debugging tool called `hook_model_op`, which can be used for Python per operator debugging.
## Quick Start
### Installation
For a complete list of verified build configurations see [here](<./build_matrix.md>)
#### Install from PyPI
## Quickstart with the experimental Python package
#### <strong>on Windows</strong>
```bash
pip install onnxruntime-extensions
pip install --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ORT-Nightly/pypi/simple/ onnxruntime-extensions
```
#### <strong>on Linux/macOS</strong>
the packages are not ready yet, so it could be installed from source. Please make sure the compiler toolkit like gcc(later than g++ 8.0) or clang, and the tool <strong>cmake</strong> are installed before the following command
```bash
python -m pip install git+https://github.com/microsoft/onnxruntime-extensions.git
```
#### Install from source
1. Install the following pre-requisites
## Usage
* A C/C++ compiler for your operating system (gcc on Linux, Visual Studio on Windows, CLang on Mac)
* [Cmake](https://cmake.org/)
* [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)
2. If running on Windows, ensure that long file names are enabled, both for the [operating system](https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation?tabs=cmd) and for git: `git config --system core.longpaths true`
3. Install the package from source
```bash
python -m pip install git+https://github.com/microsoft/onnxruntime-extensions.git
```
### Computer vision quick start
Build an augmented ONNX model with ImageNet pre and post processing.
```Python
import onnx
import torch
from onnxruntime_extensions import pnp
# Download the MobileNet V2 model from the ONNX model zoo
# https://github.com/onnx/models/blob/main/vision/classification/mobilenet/model/mobilenetv2-12.onnx
mnv2 = onnx.load_model('mobilenetv2-12.onnx')
augmented_model = pnp.SequentialProcessingModule(
pnp.PreMobileNet(224),
mnv2,
pnp.PostMobileNet())
# The image size is dynamic, the 400x500 here is to get a fake input to enable export
fake_image_input = torch.ones(500, 400, 3).to(torch.uint8)
model_input_name = 'image'
pnp.export(augmented_model,
fake_image_input,
opset_version=11,
output_path='mobilenetv2-aug.onnx',
input_names=[model_input_name],
dynamic_axes={model_input_name: [0, 1]})
```
The above python code will translate the ImageNet pre/post processing functions into an augmented model which can do inference on all platforms that ONNNXRuntime supports, like Android/iOS, without any Python runtime and the 3rd-party libraries dependency.
You can see a sample of the model augmentation code as well as a C# console app that runs the augmented model with ONNX Runtime [here](https://github.com/microsoft/onnxruntime-inference-examples/tree/main/c_sharp/image_classification)
Note: On mobile platform, the ONNXRuntime package may not support all kernels required by the model, to ensure all the ONNX operator kernels were built into ONNXRuntime binaries, please use [ONNX Runtime Custom Build](https://onnxruntime.ai/docs/build/custom.html).
### Text pre and post processing quick start
Obtain or export the base model.
```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
model_path = "./" + model_name + ".onnx"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# set the model to inference mode
model.eval()
# Generate dummy inputs to the model. Adjust if neccessary
inputs = {
'input_ids': torch.randint(32, [1, 32], dtype=torch.long), # list of numerical ids for the tokenized text
'attention_mask': torch.ones([1, 32], dtype=torch.long) # dummy list of ones
}
symbolic_names = {0: 'batch_size', 1: 'max_seq_llsen'}
torch.onnx.export(model, # model being run
(inputs['input_ids'],
inputs['attention_mask']),
model_path, # where to save the model (can be a file or file-like object)
opset_version=11, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input_ids',
'input_mask'], # the model's input names
output_names=['output_logits'], # the model's output names
dynamic_axes={'input_ids': symbolic_names,
'input_mask' : symbolic_names,
'output_logits' : symbolic_names}) # variable length axes
```
Build an augmented ONNX model with BERT pre and processing.
```python
from pathlib import Path
import torch
from transformers import AutoTokenizer
import onnx
from onnxruntime_extensions import pnp
# The fine-tuned HuggingFace model is exported to ONNX in the code snippet above
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
model_path = Path(model_name + ".onnx")
# mapping the BertTokenizer outputs into the onnx model inputs
def map_token_output(input_ids, attention_mask, token_type_ids):
return input_ids.unsqueeze(0), token_type_ids.unsqueeze(0), attention_mask.unsqueeze(0)
# Post process the start and end logits
def post_process(*pred):
output = torch.argmax(pred[0])
return output
tokenizer = AutoTokenizer.from_pretrained(model_name)
bert_tokenizer = pnp.PreHuggingFaceBert(hf_tok=tokenizer)
bert_model = onnx.load_model(str(model_path))
augmented_model = pnp.SequentialProcessingModule(bert_tokenizer, map_token_output,
bert_model, post_process)
test_input = ["This is s test sentence"]
# create the final onnx model which includes pre- and post- processing.
augmented_model = pnp.export(augmented_model,
test_input,
opset_version=12,
input_names=['input'],
output_names=['output'],
output_path=model_name + '-aug.onnx',
dynamic_axes={'input': [0], 'output': [0]})
```
To run the augmented model with ONNX Runtime, you need to register the operators in the onnxruntime-extensions custom ops (including the BertTokenizer) library with ONNX Runtime.
```python
import onnxruntime
import onnxruntime_extensions
test_input = ["I don't really like tomatoes. They are too bitter"]
# Load the model
session_options = onnxruntime.SessionOptions()
session_options.register_custom_ops_library(onnxruntime_extensions.get_library_path())
session = onnxruntime.InferenceSession('distilbert-base-uncased-finetuned-sst-2-english-aug.onnx', session_options)
# Run the model
results = session.run(["g2_output"], {"g1_it_2589433893008": test_input})
print(results[0])
```
The result is 0 when the sentiment is negative and 1 when the sentiment is positive.
## Register the custom operators in onnxruntime-extensions with ONNX Runtime
### C++
```c++
// The line loads the customop library into ONNXRuntime engine to load the ONNX model with the custom op
Ort::ThrowOnError(Ort::GetApi().RegisterCustomOpsLibrary((OrtSessionOptions*)session_options, custom_op_library_filename, &handle));
// The regular ONNXRuntime invoking to run the model.
Ort::Session session(env, model_uri, session_options);
RunSession(session, inputs, outputs);
```
## 1. Augment an ONNX model with a pre- and post-processing pipeline
check [tutorial](./tutorials) for a couple of examples on how to do it.
## 2. Using Extensions for ONNX Runtime inference
### Python
@ -199,10 +43,28 @@ from onnxruntime_extensions import get_library_path as _lib_path
so = _ort.SessionOptions()
so.register_custom_ops_library(_lib_path())
# Run the ONNXRuntime Session.
# Run the ONNXRuntime Session, as ONNXRuntime docs suggested.
# sess = _ort.InferenceSession(model, so)
# sess.run (...)
```
### C++
```c++
// The line loads the customop library into ONNXRuntime engine to load the ONNX model with the custom op
Ort::ThrowOnError(Ort::GetApi().RegisterCustomOpsLibrary((OrtSessionOptions*)session_options, custom_op_library_filename, &handle));
// The regular ONNXRuntime invoking to run the model.
Ort::Session session(env, model_uri, session_options);
RunSession(session, inputs, outputs);
```
### Java
```java
var env = OrtEnvironment.getEnvironment();
var sess_opt = new OrtSession.SessionOptions();
/* Register the custom ops from onnxruntime-extensions */
sess_opt.registerCustomOpLibrary(OrtxPackage.getLibraryPath());
```
## Use exporters to generate graphs with custom operators
@ -212,9 +74,9 @@ The PyTorch and TensorFlow converters support custom operator generation if the
2. [CustomOp conversion by tf2onnx](https://github.com/microsoft/onnxruntime-extensions/blob/main/tutorials/tf2onnx_custom_ops_tutorial.ipynb)
## Contribute a new operator to onnxruntime-extensions
## Add a new custom operator to onnxruntime-extensions
Welcome to contribute the customop C++ implementation directly in this repository, which will widely benefit other users. Besides C++, if you want to quickly verify the ONNX model with some custom operators with Python language, PyOp will help with that
You can contribute customop C++ implementations directly in this repository if they have general applicability to other users. In addition, if you want to quickly verify the ONNX model with Python, you can wrap the custom operator with PyOp.
```python
import numpy
@ -231,28 +93,7 @@ def inverse(x):
# outputs = model_func(inputs)
# ...
```
## Build and Development
This project supports Python and can be built from source easily, or a simple cmake build without Python dependency.
### Python package
- Install Visual Studio with C++ development tools on Windows, or gcc for Linux or xcode for MacOS, and cmake on the unix-like platform. (**hints**: in Windows platform, if cmake bundled in Visual Studio was used, please specify the set _VCVARS=%ProgramFiles(x86)%\Microsoft Visual Studio\2019\<Edition>\VC\Auxiliary\Build\vcvars64.bat_)
- Prepare Python env and install the pip packages in the requirements.txt.
- `python setup.py install` to build and install the package.
- OR `python setup.py develop` to install the package in the development mode, which is more friendly for the developer since (re)installation is not needed with every build.
Test:
- run `pytest test` in the project root directory.
### The share library for non-Python
If only DLL/shared library is needed without any Python dependencies, please run `build.bat` or `bash ./build.sh` to build the library.
By default the DLL or the library will be generated in the directory `out/<OS>/<FLAVOR>`. There is a unit test to help verify the build.
### The static library and link with ONNXRuntime
For sake of the binary size, the project can be built as a static library and link into ONNXRuntime. Here are two additional arguments [–-use_extensions and --extensions_overridden_path](https://github.com/microsoft/onnxruntime/blob/860ba8820b72d13a61f0d08b915cd433b738ffdc/tools/ci_build/build.py#L416) on building onnxruntime.
Check [development.md](./docs/development.md) for build and test
## Contributing

Просмотреть файл

@ -1,9 +1,9 @@
@ECHO OFF
SETLOCAL ENABLEDELAYEDEXPANSION
IF DEFINED VSINSTALLDIR GOTO :VSDEV_CMD
IF NOT DEFINED VCVARS GOTO :NOT_FOUND
IF NOT DEFINED VSDEVCMD GOTO :NOT_FOUND
CALL "%VCVARS%"
CALL "%VSDEVCMD%"
:VSDEV_CMD
set GENERATOR="Visual Studio 16 2019"

Просмотреть файл

32
docs/development.md Normal file
Просмотреть файл

@ -0,0 +1,32 @@
# Build and Development
This project supports Python and can be built from source easily, or a simple cmake build without Python dependency.
## Python package
The package contains all custom operators and some Python scripts to manipulate the ONNX models.
- Install Visual Studio with C++ development tools on Windows, or gcc(>8.0) for Linux or xcode for macOS, and cmake on the unix-like platform. (**hints**: in Windows platform, if cmake bundled in Visual Studio was used, please specify the set _VSDEVCMD=%ProgramFiles(x86)%\Microsoft Visual Studio\<VERSION_YEAR>\<Edition>\Common7\Tools\VsDevCmd.bat_)
- If running on Windows, ensure that long file names are enabled, both for the [operating system](https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation?tabs=cmd) and for git: `git config --system core.longpaths true`
- Prepare Python env and install the pip packages in the requirements.txt.
- `pip install .` to build and install the package.<br/> OR `pip install -e .` to install the package in the development mode, which is more friendly for the developer since the Python code change will take effect without having to copy the files to a different location in the disk.(**hints**: debug=1 in setup.cfg wil make C++ code be debuggable in a Python process.)
Test:
- 'pip install -r requirements-dev.txt' to install pip packages for development.
- run `pytest test` in the project root directory.
For a complete list of verified build configurations see [here](<./ci_matrix.md>)
## Java package
`bash ./build.sh -DOCOS_BUILD_JAVA=ON` to build jar package in out/<OS>/Release folder
## Android package
- pre-requisites: [Android Studio](https://developer.android.com/studio)
`bash ./tools/android.package.sh` to build the full AAR package or `bash ./build.android` to build a quick Android emulator package.
## iOS package
- TODO:
## Web-Assembly
ONNXRuntime-Extensions will be built as a static library and linked with ONNXRuntime due to the lack of dynamical library loading in WASM. Here are two additional arguments [–-use_extensions and --extensions_overridden_path](https://github.com/microsoft/onnxruntime/blob/860ba8820b72d13a61f0d08b915cd433b738ffdc/tools/ci_build/build.py#L416) on building onnxruntime to include ONNXRuntime-Extensions footprint in the ONNXRuntime package.
## The C++ share library
for any other cases, please run `build.bat` or `bash ./build.sh` to build the library. By default, the DLL or the library will be generated in the directory `out/<OS>/<FLAVOR>`. There is a unit test to help verify the build.

Просмотреть файл

Просмотреть файл

Просмотреть файл

@ -0,0 +1,78 @@
import onnx
import torch
import onnxruntime
import onnxruntime_extensions
from pathlib import Path
from onnxruntime_extensions import pnp
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
model_path = "./" + model_name + ".onnx"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# set the model to inference mode
model.eval()
# Generate dummy inputs to the model. Adjust if neccessary
inputs = {
'input_ids': torch.randint(32, [1, 32], dtype=torch.long), # list of numerical ids for the tokenized text
'attention_mask': torch.ones([1, 32], dtype=torch.long) # dummy list of ones
}
symbolic_names = {0: 'batch_size', 1: 'max_seq_llsen'}
torch.onnx.export(model, # model being run
(inputs['input_ids'],
inputs['attention_mask']),
model_path, # where to save the model (can be a file or file-like object)
opset_version=11, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input_ids',
'input_mask'], # the model's input names
output_names=['output_logits'], # the model's output names
dynamic_axes={'input_ids': symbolic_names,
'input_mask' : symbolic_names,
'output_logits' : symbolic_names}) # variable length axes
# The fine-tuned HuggingFace model is exported to ONNX in the code snippet above
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
model_path = Path(model_name + ".onnx")
# mapping the BertTokenizer outputs into the onnx model inputs
def map_token_output(input_ids, attention_mask, token_type_ids):
return input_ids.unsqueeze(0), token_type_ids.unsqueeze(0), attention_mask.unsqueeze(0)
# Post process the start and end logits
def post_process(*pred):
output = torch.argmax(pred[0])
return output
tokenizer = AutoTokenizer.from_pretrained(model_name)
bert_tokenizer = pnp.PreHuggingFaceBert(hf_tok=tokenizer)
bert_model = onnx.load_model(str(model_path))
augmented_model = pnp.SequentialProcessingModule(bert_tokenizer, map_token_output,
bert_model, post_process)
test_input = ["This is s test sentence"]
# create the final onnx model which includes pre- and post- processing.
augmented_model = pnp.export(augmented_model,
test_input,
opset_version=12,
input_names=['input'],
output_names=['output'],
output_path=model_name + '-aug.onnx',
dynamic_axes={'input': [0], 'output': [0]})
test_input = ["I don't really like tomatoes. They are too bitter"]
# Load the model
session_options = onnxruntime.SessionOptions()
session_options.register_custom_ops_library(onnxruntime_extensions.get_library_path())
session = onnxruntime.InferenceSession('distilbert-base-uncased-finetuned-sst-2-english-aug.onnx', session_options)
# Run the model
results = session.run(["output"], {"input": test_input})
print("\nResult is: " + ("positive" if results[0] == 1 else "negative"))