Add custom ops ReplaceZero (#739)
* Add custom ops ReplaceZero * fix merge conflicts
This commit is contained in:
Родитель
05df33b302
Коммит
bef5f07e33
|
@ -8,12 +8,12 @@
|
|||
#include "cuda/fast_gelu.h"
|
||||
#include "cuda/mul_sigmoid.h"
|
||||
#include "cuda/negxplus1.h"
|
||||
#include "cuda/replace_zero.h"
|
||||
#include "cuda/scatter_nd_of_shape.h"
|
||||
#include "cuda/transpose_cast.h"
|
||||
#endif
|
||||
|
||||
FxLoadCustomOpFactory LoadCustomOpClasses_Contrib = []() -> CustomOpArray& {
|
||||
|
||||
using AddSharedInputFloat32Type = typename contrib::AddOrMulSharedInput<float, true>;
|
||||
using MulSharedInputFloat32Type = typename contrib::AddOrMulSharedInput<float, false>;
|
||||
|
||||
|
@ -24,7 +24,6 @@ FxLoadCustomOpFactory LoadCustomOpClasses_Contrib = []() -> CustomOpArray& {
|
|||
using Transpose2DCastFloat16ToFloat32Type = typename contrib::Transpose2DCast<ortc::MFloat16, float>;
|
||||
#endif
|
||||
|
||||
|
||||
static OrtOpLoader op_loader(
|
||||
[]() { return nullptr; }
|
||||
#ifdef USE_CUDA
|
||||
|
@ -36,6 +35,7 @@ FxLoadCustomOpFactory LoadCustomOpClasses_Contrib = []() -> CustomOpArray& {
|
|||
CustomCudaStructV2("MulMulSigmoid", contrib::MulMulSigmoid<float>),
|
||||
CustomCudaStructV2("MulSigmoid", contrib::MulSigmoid<float>),
|
||||
CustomCudaStructV2("NegXPlus1", contrib::NegXPlus1<float>),
|
||||
CustomCudaStructV2("ReplaceZero", contrib::ReplaceZero<float>),
|
||||
CustomCudaStructV2("ScatterNDOfShape", contrib::ScatterNDOfShape<float>),
|
||||
#if ORT_API_VERSION >= 16
|
||||
|
||||
|
@ -47,6 +47,7 @@ FxLoadCustomOpFactory LoadCustomOpClasses_Contrib = []() -> CustomOpArray& {
|
|||
CustomCudaStructV2("MulMulSigmoid", contrib::MulMulSigmoid<ortc::MFloat16>),
|
||||
CustomCudaStructV2("MulSigmoid", contrib::MulSigmoid<ortc::MFloat16>),
|
||||
CustomCudaStructV2("NegXPlus1", contrib::NegXPlus1<ortc::MFloat16>),
|
||||
CustomCudaStructV2("ReplaceZero", contrib::ReplaceZero<ortc::MFloat16>),
|
||||
CustomCudaStructV2("ScatterNDOfShape", contrib::ScatterNDOfShape<ortc::MFloat16>),
|
||||
CustomCudaStructV2("Transpose2DCastFP16", Transpose2DCastFloat32ToFloat16Type),
|
||||
CustomCudaStructV2("Transpose2DCastFP32", Transpose2DCastFloat16ToFloat32Type)
|
||||
|
|
|
@ -0,0 +1,51 @@
|
|||
// Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
// Licensed under the MIT License.
|
||||
|
||||
#pragma once
|
||||
#include "ocos.h"
|
||||
#include "replace_zero_impl.cuh"
|
||||
#include "ortx_common.h"
|
||||
|
||||
namespace contrib {
|
||||
|
||||
/**
|
||||
* Y = ReplaceZero(X, by=c) is equivalent to:
|
||||
*
|
||||
* Y = X.copy()
|
||||
* X[X == 0] = c
|
||||
*
|
||||
* This operation usually appears when a tensor is updated with an operator Equal and Where.
|
||||
* This kernel avoids the creation of one null tensor.
|
||||
*/
|
||||
template <typename T>
|
||||
struct ReplaceZero {
|
||||
template <typename TDict>
|
||||
OrtxStatus OnModelAttach(const TDict& dict) {
|
||||
float default_value=0;
|
||||
by_ = dict.TryToGetAttributeWithDefault("by", default_value);
|
||||
return {};
|
||||
}
|
||||
OrtxStatus Compute(Ort::Custom::CUDAKernelContext* ctx,
|
||||
const ortc::Tensor<T>& input,
|
||||
ortc::Tensor<T>& output) const {
|
||||
const T* input_data = input.Data();
|
||||
auto input_shape = input.Shape();
|
||||
T* output_data = output.Allocate(input_shape);
|
||||
auto input_length = input.NumberOfElement();
|
||||
if (0 == input_length) {
|
||||
return {};
|
||||
}
|
||||
|
||||
LaunchReplaceZeroKernel<T>(reinterpret_cast<cudaStream_t>(ctx->GetCudaStream()),
|
||||
input_length,
|
||||
input_data,
|
||||
output_data,
|
||||
by_);
|
||||
return {};
|
||||
}
|
||||
|
||||
private:
|
||||
float by_;
|
||||
};
|
||||
|
||||
} // namespace contrib
|
|
@ -0,0 +1,68 @@
|
|||
// Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
// Licensed under the MIT License.
|
||||
|
||||
#include "device_prop.cuh"
|
||||
#include "utils.cuh"
|
||||
#include "replace_zero_impl.cuh"
|
||||
#include "cuda_type.h"
|
||||
|
||||
#ifndef CUDA_LONG
|
||||
#define CUDA_LONG int32_t
|
||||
#endif
|
||||
|
||||
using namespace Ort::Custom;
|
||||
|
||||
template <typename T>
|
||||
__device__ __inline__ T _replace_zero(const T x, const T by) {
|
||||
return x == (T)0 ? by : x;
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ __inline__ half _replace_zero(const half x, const half by) {
|
||||
#if __CUDA_ARCH__ < 700
|
||||
return __half2float(x) == 0 ? by : x;
|
||||
#else
|
||||
return x == (half)0 ? by : x;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void ReplaceZeroKernel(T* output_data, const T* input_data, CUDA_LONG N, const T by) {
|
||||
CUDA_LONG id = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (id >= N)
|
||||
return;
|
||||
output_data[id] = _replace_zero(input_data[id], by);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T _cast(float value) { return (T)value; }
|
||||
|
||||
template <>
|
||||
half _cast(float value) { return __float2half(value); }
|
||||
|
||||
template <typename T>
|
||||
cudaError_t _LaunchReplaceZeroKernel(cudaStream_t stream, int input_length, const T* input_data, T* output_data, float by) {
|
||||
if (input_length == 0)
|
||||
return cudaGetLastError();
|
||||
using TT = typename contrib::CudaT<T>::MappedType;
|
||||
|
||||
CUDA_LONG N = static_cast<CUDA_LONG>(input_length);
|
||||
|
||||
const int num_threads_per_block = 256;
|
||||
const int num_elements_per_thread = (N + num_threads_per_block - 1) / num_threads_per_block;
|
||||
|
||||
TT cby = _cast<TT>(by);
|
||||
ReplaceZeroKernel<TT><<<num_elements_per_thread, num_threads_per_block, 0, stream>>>(
|
||||
reinterpret_cast<TT*>(output_data), reinterpret_cast<const TT*>(input_data), N, cby);
|
||||
return cudaGetLastError();
|
||||
}
|
||||
|
||||
template <>
|
||||
cudaError_t LaunchReplaceZeroKernel<float>(cudaStream_t stream, int input_length, const float* input_data, float* output_data, float by) {
|
||||
return _LaunchReplaceZeroKernel(stream, input_length, input_data, output_data, by);
|
||||
}
|
||||
|
||||
template <>
|
||||
cudaError_t LaunchReplaceZeroKernel<ortc::MFloat16>(cudaStream_t stream, int input_length, const ortc::MFloat16* input_data, ortc::MFloat16* output_data, float by) {
|
||||
return _LaunchReplaceZeroKernel(stream, input_length, input_data, output_data, by);
|
||||
}
|
|
@ -0,0 +1,9 @@
|
|||
// Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
// Licensed under the MIT License.
|
||||
|
||||
#pragma once
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
template <typename T>
|
||||
cudaError_t LaunchReplaceZeroKernel(cudaStream_t stream, int input_length, const T* input_data, T* output_data, float by);
|
|
@ -652,6 +652,66 @@ class TestCudaOps(unittest.TestCase):
|
|||
self._transpose_cast_cuda(TensorProto.FLOAT)
|
||||
self._transpose_cast_cuda(TensorProto.FLOAT16)
|
||||
|
||||
def _replace_zero_cuda(self, itype):
|
||||
dtype = np.float32 if itype == TensorProto.FLOAT else np.float16
|
||||
model1 = helper.make_model(
|
||||
helper.make_graph(
|
||||
[
|
||||
helper.make_node("Equal", ["X", "zero"], ["cond"]),
|
||||
helper.make_node("Where", ["cond", "cst", "X"], ["Y"]),
|
||||
],
|
||||
"nd",
|
||||
[helper.make_tensor_value_info("X", itype, [None, None, None])],
|
||||
[helper.make_tensor_value_info("Y", itype, [None, None, None])],
|
||||
[
|
||||
numpy_helper.from_array(np.array([0], dtype=dtype), name="zero"),
|
||||
numpy_helper.from_array(np.array([1.67], dtype=dtype), name="cst"),
|
||||
],
|
||||
),
|
||||
opset_imports=[helper.make_opsetid("", 18)],
|
||||
ir_version=9,
|
||||
)
|
||||
|
||||
model2 = helper.make_model(
|
||||
helper.make_graph(
|
||||
[
|
||||
helper.make_node(
|
||||
"ReplaceZero",
|
||||
["X"],
|
||||
["Y"],
|
||||
by=1.67,
|
||||
domain="ai.onnx.contrib",
|
||||
)
|
||||
],
|
||||
"nd",
|
||||
[helper.make_tensor_value_info("X", itype, [None, None, None])],
|
||||
[helper.make_tensor_value_info("Y", itype, [None, None, None])],
|
||||
),
|
||||
opset_imports=[
|
||||
helper.make_opsetid("", 18),
|
||||
helper.make_opsetid("ai.onnx.contrib", 1),
|
||||
],
|
||||
ir_version=9,
|
||||
)
|
||||
|
||||
dtype = np.float32 if itype == TensorProto.FLOAT else np.float16
|
||||
x = (np.arange(18) - 4).reshape((3, 2, 3)).astype(dtype)
|
||||
|
||||
feeds1 = dict(X=x)
|
||||
ref = ReferenceEvaluator(model1)
|
||||
expected = ref.run(None, feeds1)[0]
|
||||
|
||||
opts = _ort.SessionOptions()
|
||||
opts.register_custom_ops_library(_get_library_path())
|
||||
sess = _ort.InferenceSession(model2.SerializeToString(), opts, providers=["CUDAExecutionProvider"])
|
||||
got = sess.run(None, feeds1)[0]
|
||||
assert_allclose(expected, got, atol=1e-5)
|
||||
|
||||
@unittest.skipIf(not has_cuda(), reason="cuda not available")
|
||||
def test_replace_zero_cuda(self):
|
||||
self._replace_zero_cuda(TensorProto.FLOAT)
|
||||
self._replace_zero_cuda(TensorProto.FLOAT16)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main(verbosity=2)
|
||||
|
|
Загрузка…
Ссылка в новой задаче