onnxruntime-extensions/test/test_gpt2tok.py

151 строка
6.4 KiB
Python

import unittest
import numpy as np
import onnxruntime as _ort
from onnx import helper, onnx_pb as onnx_proto
from transformers import GPT2Tokenizer
from onnxruntime_extensions import (
PyCustomOpDef,
onnx_op, util,
make_onnx_model,
enable_py_op,
get_library_path as _get_library_path)
def _get_file_content(path):
with open(path, "rb") as file:
return file.read()
def _create_test_model(**kwargs):
vocab_file = kwargs["vocab_file"]
merges_file = kwargs["merges_file"]
max_length = kwargs["max_length"]
input1 = helper.make_tensor_value_info(
'string_input', onnx_proto.TensorProto.STRING, [None])
output1 = helper.make_tensor_value_info(
'input_ids', onnx_proto.TensorProto.INT64, [None, None])
output2 = helper.make_tensor_value_info(
'attention_mask', onnx_proto.TensorProto.INT64, [None, None])
if kwargs["attention_mask"]:
node = [helper.make_node(
'GPT2Tokenizer', ['string_input'], ['input_ids', 'attention_mask'], vocab=_get_file_content(vocab_file),
merges=_get_file_content(merges_file), name='bpetok', padding_length=max_length,
domain='ai.onnx.contrib')]
graph = helper.make_graph(node, 'test0', [input1], [output1, output2])
model = make_onnx_model(graph)
else:
node = [helper.make_node(
'GPT2Tokenizer', ['string_input'], ['input_ids'], vocab=_get_file_content(vocab_file),
merges=_get_file_content(merges_file), name='bpetok', padding_length=max_length,
domain='ai.onnx.contrib')]
graph = helper.make_graph(node, 'test0', [input1], [output1])
model = make_onnx_model(graph)
return model
class MyGPT2Tokenizer:
def __init__(self, token_json, merges):
self.tokenizer = GPT2Tokenizer(token_json, merges)
# not ensure which pad_token should be
self.tokenizer.pad_token = '!' # padding token = 0
def tokenizer_sentence(self, test_sentence, padding_length):
if padding_length == -1:
input_ids = np.array(self.tokenizer(test_sentence, padding=True)["input_ids"])
attention_mask = np.array(self.tokenizer(test_sentence, padding=True)["attention_mask"])
else:
input_ids = np.array(
self.tokenizer(test_sentence, padding="max_length", truncation=True, max_length=padding_length)[
"input_ids"])
attention_mask = np.array(
self.tokenizer(test_sentence, padding="max_length", truncation=True, max_length=padding_length)[
"attention_mask"])
return input_ids, attention_mask
class TestGPT2Tokenizer(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.tokjson = util.get_test_data_file('data', 'gpt2.vocab')
cls.merges = util.get_test_data_file('data', 'gpt2.merges.txt')
cls.tokenizer = MyGPT2Tokenizer(cls.tokjson, cls.merges)
@onnx_op(op_type="GPT2Tokenizer",
inputs=[PyCustomOpDef.dt_string],
outputs=[PyCustomOpDef.dt_int64, PyCustomOpDef.dt_int64],
attrs={"padding_length": PyCustomOpDef.dt_int64})
def bpe_tokenizer(s, **kwargs):
padding_length = kwargs["padding_length"]
input_ids, attention_mask = cls.tokenizer.tokenizer_sentence([s[0]], padding_length)
return input_ids, attention_mask
def tearDown(self) -> None:
enable_py_op(True)
return super().tearDown()
def _run_tokenizer(self, test_sentence, padding_length=-1):
model = _create_test_model(vocab_file=self.tokjson,
merges_file=self.merges, max_length=padding_length, attention_mask=True)
so = _ort.SessionOptions()
so.register_custom_ops_library(_get_library_path())
sess = _ort.InferenceSession(model.SerializeToString(), so, providers=['CPUExecutionProvider'])
input_text = np.array(test_sentence)
input_ids, attention_mask = sess.run(None, {'string_input': input_text})
expect_input_ids, expect_attention_mask = self.tokenizer.tokenizer_sentence(test_sentence, padding_length)
np.testing.assert_array_equal(expect_input_ids, input_ids)
np.testing.assert_array_equal(expect_attention_mask, attention_mask)
def test_tokenizer(self):
enable_py_op(False)
self._run_tokenizer(["I can feel the magic, can you?"])
self._run_tokenizer(["Hey Cortana"])
self._run_tokenizer(["你好123。david"])
self._run_tokenizer(["爱你一三一四"])
self._run_tokenizer(["women'thinsulate 3 button leather car co"])
self._run_tokenizer(["#$%^&()!@?><L:{}\\[];',./`ǠǡǢǣǤǥǦǧǨ"])
self._run_tokenizer(["ڠڡڢڣڤڥڦڧڨکڪګڬڭڮگ"])
self._run_tokenizer(["⛀⛁⛂⛃⛄⛅⛆⛇⛈⛉⛊⛋⛌⛍⛎⛏"])
self._run_tokenizer(["I can feel the magic, can you?", "Yes I do."])
self._run_tokenizer(["I can feel the magic, can you?", "Yes I do."], 100)
def test_optional_outputs(self):
enable_py_op(False)
# Test for model without attention mask (input id output is always required)
model = _create_test_model(vocab_file=self.tokjson,
merges_file=self.merges, max_length=-1, attention_mask=False)
so = _ort.SessionOptions()
so.register_custom_ops_library(_get_library_path())
sess = _ort.InferenceSession(model.SerializeToString(), so, providers=['CPUExecutionProvider'])
input_text = np.array(["Hello World"])
outputs = sess.run(None, {'string_input': input_text})
# Test output size
np.testing.assert_array_equal(len(outputs), 1)
# Test output values
gpt2_out = self.tokenizer.tokenizer_sentence(["Hello World"], -1)
expect_input_ids = gpt2_out[0]
np.testing.assert_array_equal(expect_input_ids, outputs[0])
def test_tokenizer_pyop(self):
self._run_tokenizer(["I can feel the magic, can you?"])
self._run_tokenizer(["Hey Cortana"])
self._run_tokenizer(["你好123。david"])
self._run_tokenizer(["爱你一三一四"])
self._run_tokenizer(["women'thinsulate 3 button leather car co"])
self._run_tokenizer(["#$%^&()!@?><L:{}\\[];',./`ǠǡǢǣǤǥǦǧǨ"])
self._run_tokenizer(["ڠڡڢڣڤڥڦڧڨکڪګڬڭڮگ"])
self._run_tokenizer(["⛀⛁⛂⛃⛄⛅⛆⛇⛈⛉⛊⛋⛌⛍⛎⛏"])
if __name__ == "__main__":
unittest.main()