onnxruntime-extensions/onnxruntime_extensions/pp_api.py

82 строки
2.9 KiB
Python

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
###############################################################################
import os
from . import _extensions_pydll as _C
if not hasattr(_C, "delete_object"):
raise ImportError(
"onnxruntime_extensions is not built with pre-processing C API\n"
"To enable it, please build the package with --ortx-user-option=pp_api")
create_processor = _C.create_processor
load_images = _C.load_images
image_pre_process = _C.image_pre_process
tensor_result_get_at = _C.tensor_result_get_at
create_tokenizer = _C.create_tokenizer
batch_tokenize = _C.batch_tokenize
batch_detokenize = _C.batch_detokenize
delete_object = _C.delete_object
class Tokenizer:
def __init__(self, tokenizer_dir):
self.tokenizer = None
if os.path.isdir(tokenizer_dir):
self.tokenizer = create_tokenizer(tokenizer_dir)
else:
try:
from transformers.utils import cached_file
resolved_full_file = cached_file(
tokenizer_dir, "tokenizer.json")
resolved_config_file = cached_file(
tokenizer_dir, "tokenizer_config.json")
except ImportError:
raise ValueError(
f"Directory '{tokenizer_dir}' not found and transformers is not available")
if not os.path.exists(resolved_full_file):
raise FileNotFoundError(
f"Downloaded HF file '{resolved_full_file}' cannot be found")
if (os.path.dirname(resolved_full_file) != os.path.dirname(resolved_config_file)):
raise FileNotFoundError(
f"Downloaded HF files '{resolved_full_file}' "
f"and '{resolved_config_file}' are not in the same directory")
tokenizer_dir = os.path.dirname(resolved_full_file)
self.tokenizer = create_tokenizer(tokenizer_dir)
def tokenize(self, text):
return batch_tokenize(self.tokenizer, [text])[0]
def detokenize(self, tokens):
return batch_detokenize(self.tokenizer, [tokens])[0]
def __del__(self):
if delete_object and self.tokenizer:
delete_object(self.tokenizer)
self.tokenizer = None
class ImageProcessor:
def __init__(self, processor_json):
self.processor = create_processor(processor_json)
def pre_process(self, images):
if isinstance(images, str):
images = [images]
if isinstance(images, list):
images = load_images(images)
return image_pre_process(self.processor, images)
@staticmethod
def to_numpy(result, idx):
return tensor_result_get_at(result, idx)
def __del__(self):
if delete_object and self.processor:
delete_object(self.processor)
self.processor = None