[Bugfix][Keras] axis of softmax (#3834)
This commit is contained in:
Родитель
347e3d9d35
Коммит
07a83a669f
|
@ -117,7 +117,16 @@ def _convert_advanced_activation(inexpr, keras_layer, etab):
|
||||||
act_type = type(keras_layer).__name__
|
act_type = type(keras_layer).__name__
|
||||||
|
|
||||||
if act_type == 'Softmax':
|
if act_type == 'Softmax':
|
||||||
return _op.nn.softmax(inexpr, axis=1)
|
axis = keras_layer.axis
|
||||||
|
dims = len(keras_layer.input_shape)
|
||||||
|
if isinstance(axis, list):
|
||||||
|
raise tvm.error.OpAttributeUnImplemented(
|
||||||
|
'Softmax with axes {} is not supported.'.format(axis))
|
||||||
|
if axis == -1:
|
||||||
|
axis = 1
|
||||||
|
else:
|
||||||
|
axis = axis + 1 if axis < dims - 1 else 1
|
||||||
|
return _op.nn.softmax(inexpr, axis=axis)
|
||||||
if act_type == 'ReLU':
|
if act_type == 'ReLU':
|
||||||
if keras_layer.max_value:
|
if keras_layer.max_value:
|
||||||
return _op.clip(inexpr, a_min=0., a_max=float(keras_layer.max_value))
|
return _op.clip(inexpr, a_min=0., a_max=float(keras_layer.max_value))
|
||||||
|
@ -344,7 +353,7 @@ def _convert_pooling(inexpr, keras_layer, etab):
|
||||||
pad_l, pad_r = _get_pad_pair(in_w, pool_w, stride_w)
|
pad_l, pad_r = _get_pad_pair(in_w, pool_w, stride_w)
|
||||||
params['padding'] = [pad_t, pad_l, pad_b, pad_r]
|
params['padding'] = [pad_t, pad_l, pad_b, pad_r]
|
||||||
else:
|
else:
|
||||||
raise tvm.error.OpAttributeUnimplemented(
|
raise tvm.error.OpAttributeUnImplemented(
|
||||||
'Padding with {} is not supported in operator Pooling.'.format(keras_layer.padding))
|
'Padding with {} is not supported in operator Pooling.'.format(keras_layer.padding))
|
||||||
if pool_type == 'MaxPooling2D':
|
if pool_type == 'MaxPooling2D':
|
||||||
return _op.nn.max_pool2d(inexpr, **params)
|
return _op.nn.max_pool2d(inexpr, **params)
|
||||||
|
|
|
@ -95,6 +95,11 @@ def test_forward_merge():
|
||||||
def test_forward_activations():
|
def test_forward_activations():
|
||||||
data = keras.layers.Input(shape=(32, 32, 3))
|
data = keras.layers.Input(shape=(32, 32, 3))
|
||||||
act_funcs = [keras.layers.Activation('softmax'),
|
act_funcs = [keras.layers.Activation('softmax'),
|
||||||
|
keras.layers.Softmax(),
|
||||||
|
keras.layers.Softmax(axis=-1),
|
||||||
|
keras.layers.Softmax(axis=1),
|
||||||
|
keras.layers.Softmax(axis=2),
|
||||||
|
keras.layers.Softmax(axis=3),
|
||||||
keras.layers.Activation('softplus'),
|
keras.layers.Activation('softplus'),
|
||||||
keras.layers.Activation('relu'),
|
keras.layers.Activation('relu'),
|
||||||
keras.layers.Activation('softsign'),
|
keras.layers.Activation('softsign'),
|
||||||
|
@ -103,7 +108,6 @@ def test_forward_activations():
|
||||||
keras.layers.Activation('tanh'),
|
keras.layers.Activation('tanh'),
|
||||||
keras.layers.Activation('linear'),
|
keras.layers.Activation('linear'),
|
||||||
keras.layers.Activation('selu'),
|
keras.layers.Activation('selu'),
|
||||||
keras.layers.Softmax(),
|
|
||||||
keras.layers.ReLU(),
|
keras.layers.ReLU(),
|
||||||
keras.layers.ReLU(max_value=6.),
|
keras.layers.ReLU(max_value=6.),
|
||||||
keras.layers.LeakyReLU(alpha=0.3),
|
keras.layers.LeakyReLU(alpha=0.3),
|
||||||
|
|
Загрузка…
Ссылка в новой задаче