[Runtime] Allow parameter sharing between modules (#3489)

As GraphRuntime does not provide control-flow logics, we have to split
our model to two parts. While we need to share parameters between them
to save memory usage.

Solution:
1) add "lazy_init_input" in graph's attributes
   "attrs": {
     ... ...
     "lazy_init_input": [
       "list_str",
       [
         "p0"
       ]
     ]
    }
2) allow un-allocated NDArray entry in SetupStorage
3) utilize "set_input_zero_copy" function to set parameters
This commit is contained in:
Yong Sun 2019-09-02 20:53:42 -07:00 коммит произвёл Haichen Shen
Родитель 0fa308e9ef
Коммит 224cc243b4
5 изменённых файлов: 123 добавлений и 12 удалений

Просмотреть файл

@ -99,6 +99,8 @@ class NDArray {
bool defined() const {
return data_ != nullptr;
}
/*! \return If NDArray is allocated*/
inline bool allocated() const;
/*! \return If both NDArray reference the same container */
bool same_as(const NDArray& other) const {
return data_ == other.data_;
@ -164,11 +166,13 @@ class NDArray {
* \param shape The shape of the new array.
* \param dtype The data type of the new array.
* \param ctx The context of the Array.
* \param allocate Allocate memory if true.
* \return The created Array
*/
TVM_DLL static NDArray Empty(std::vector<int64_t> shape,
DLDataType dtype,
DLContext ctx);
DLContext ctx,
bool allocate = true);
/*!
* \brief Create a NDArray backed by a dlpack tensor.
*
@ -354,6 +358,10 @@ inline void NDArray::reset() {
}
}
inline bool NDArray::allocated() const {
return defined() && data_->dl_tensor.data != nullptr;
}
/*! \brief return the size of data the DLTensor hold, in term of number of bytes
*
* \param arr the input DLTensor

Просмотреть файл

@ -54,7 +54,15 @@ inline size_t GetDataAlignment(const DLTensor& arr) {
void GraphRuntime::Run() {
// setup the array and requirements.
for (size_t i = 0; i < op_execs_.size(); ++i) {
if (op_execs_[i]) op_execs_[i]();
if (op_execs_[i]) {
auto& op_arg = op_args_[i];
if (op_arg) {
for (auto& arg : op_arg->args) {
CHECK(arg.data != nullptr) << "Un-initialized input!";
}
}
op_execs_[i]();
}
}
}
/*!
@ -106,6 +114,8 @@ int GraphRuntime::GetInputIndex(const std::string& name) {
void GraphRuntime::SetInput(int index, DLTensor* data_in) {
CHECK_LT(static_cast<size_t>(index), input_nodes_.size());
uint32_t eid = this->entry_id(input_nodes_[index], 0);
CHECK(data_entry_[eid].allocated())
<< "Invoke 'set_input_zero_copy' for 'lazy_init_input' entry!";
data_entry_[eid].CopyFrom(data_in);
}
/*!
@ -255,7 +265,14 @@ void GraphRuntime::SetupStorage() {
for (const std::string& s_type : attrs_.dltype) {
vtype.push_back(tvm::runtime::String2TVMType(s_type));
}
// get the entry id(s) of lazy initialized inputs
std::vector<uint32_t> lazy_init_entries;
for (auto const& name : attrs_.lazy_init_input) {
int in_idx = GetInputIndex(name);
CHECK_GE(in_idx, 0) << "input \"" << name << "\" does not exist!";
uint32_t eid = this->entry_id(input_nodes_[in_idx], 0);
lazy_init_entries.push_back(eid);
}
// Size and device type of each storage pool entry.
std::vector<PoolEntry> pool_entry;
// Find the maximum space size.
@ -286,6 +303,8 @@ void GraphRuntime::SetupStorage() {
}
pool_entry[sid].size = std::max(pool_entry[sid].size, bytes);
pool_entry[sid].device_type = device_type;
pool_entry[sid].lazy_init = (std::find(lazy_init_entries.begin(),
lazy_init_entries.end(), i) != lazy_init_entries.end());
}
// Allocate the space.
@ -300,7 +319,7 @@ void GraphRuntime::SetupStorage() {
TVMContext ctx = cit == ctxs_.end() ? ctxs_[0] : *cit;
shape.push_back(static_cast<int64_t>(pit.size + 3) / 4);
storage_pool_.push_back(
NDArray::Empty(shape, DLDataType{kDLFloat, 32, 1}, ctx));
NDArray::Empty(shape, DLDataType{kDLFloat, 32, 1}, ctx, !pit.lazy_init));
}
// Assign the pooled entries. A unified memory pool is used to simplifiy

Просмотреть файл

@ -188,7 +188,8 @@ class GraphRuntime : public ModuleNode {
struct PoolEntry {
size_t size;
int device_type;
PoolEntry(int s, int dev_type) : size(s), device_type(dev_type) {}
bool lazy_init;
PoolEntry(int s, int dev_type) : size(s), device_type(dev_type), lazy_init(false) {}
};
// Node entry
struct NodeEntry {
@ -277,6 +278,7 @@ class GraphRuntime : public ModuleNode {
std::vector<int> device_index;
std::vector<std::string> dltype;
std::vector<std::vector<int64_t> > shape;
std::vector<std::string> lazy_init_input;
// The graph attribute fields.
void Load(dmlc::JSONReader *reader) {
reader->BeginObject();
@ -318,6 +320,14 @@ class GraphRuntime : public ModuleNode {
CHECK(reader->NextArrayItem());
reader->Read(&device_index);
CHECK(!reader->NextArrayItem());
} else if (key == "lazy_init_input") {
reader->BeginArray();
CHECK(reader->NextArrayItem());
reader->Read(&type);
CHECK_EQ(type, "list_str");
CHECK(reader->NextArrayItem());
reader->Read(&lazy_init_input);
CHECK(!reader->NextArrayItem());
} else {
reader->BeginArray();
CHECK(reader->NextArrayItem());

Просмотреть файл

@ -142,14 +142,17 @@ DLManagedTensor* NDArray::ToDLPack() const {
NDArray NDArray::Empty(std::vector<int64_t> shape,
DLDataType dtype,
DLContext ctx) {
DLContext ctx,
bool allocate) {
NDArray ret = Internal::Create(shape, dtype, ctx);
// setup memory content
size_t size = GetDataSize(ret.data_->dl_tensor);
size_t alignment = GetDataAlignment(ret.data_->dl_tensor);
ret.data_->dl_tensor.data =
DeviceAPI::Get(ret->ctx)->AllocDataSpace(
ret->ctx, size, alignment, ret->dtype);
if (allocate) {
// setup memory content
size_t size = GetDataSize(ret.data_->dl_tensor);
size_t alignment = GetDataAlignment(ret.data_->dl_tensor);
ret.data_->dl_tensor.data =
DeviceAPI::Get(ret->ctx)->AllocDataSpace(
ret->ctx, size, alignment, ret->dtype);
}
return ret;
}

Просмотреть файл

@ -189,6 +189,77 @@ TEST(BuildModule, Heterogeneous) {
}
}
TEST(BuildModule, LazyInitInput) {
using namespace tvm;
const int n = 4;
Array<Expr> shape{n};
auto A = placeholder(shape, Float(32), "A");
auto B = placeholder(shape, Float(32), "B");
auto C = compute(A->shape, [&A, &B](Expr i) {
return A[i] + B[i];
}, "C");
auto s = create_schedule({ C->op });
auto args = Array<Tensor>({ A, B, C });
std::unordered_map<Tensor, Buffer> binds;
auto config = BuildConfig::Create();
auto target = target::llvm();
auto lowered = lower(s, args, "myadd", binds, config);
auto module = build(lowered, target, Target(), config);
std::string json =
"{\"nodes\": [{\"op\": \"null\", \"name\": \"x\", \"inputs\": []}, {\"op\": \"null\", \"name\": \"y\", \"inputs\": []}, "
"{\"op\": \"tvm_op\", \"name\": \"add\", \"inputs\": [[0, 0, 0], [1, 0, 0]], \"attrs\": {\"func_name\": "
"\"myadd\", \"flatten_data\": \"1\", \"num_inputs\": \"2\", \"num_outputs\": \"1\"}}], "
"\"arg_nodes\": [0, 1], \"node_row_ptr\": [0, 1, 2, 3], \"heads\": [[2, 0, 0]], "
"\"attrs\": {\"shape\": [\"list_shape\", [[4], [4], [4]]], \"dltype\": [\"list_str\", [\"float32\", \"float32\", \"float32\"]], "
"\"storage_id\": [\"list_int\", [0, 1, 2]], \"lazy_init_input\": [\"list_str\", [\"y\"]]}}";
// Setup inputs.
auto a_val = runtime::NDArray::Empty({n}, {kDLFloat, 32, 1}, {kDLCPU, 0});
auto b_val = runtime::NDArray::Empty({n}, {kDLFloat, 32, 1}, {kDLCPU, 0});
auto pa = (float*)a_val.ToDLPack()->dl_tensor.data;
auto pb = (float*)b_val.ToDLPack()->dl_tensor.data;
// Assign values.
for (int i = 0; i < n; i++) {
pa[i] = pb[i] = i;
}
// Initialize graph runtime.
int cpu_dev_ty = static_cast<int>(kDLCPU);
int cpu_dev_id = 0;
const runtime::PackedFunc* graph_runtime =
tvm::runtime::Registry::Get("tvm.graph_runtime.create");
runtime::Module mod = (*graph_runtime)(json, module, cpu_dev_ty, cpu_dev_id);
PackedFunc get_input = mod.GetFunction("get_input", false);
CHECK(((runtime::NDArray)get_input("x")).allocated());
CHECK(!((runtime::NDArray)get_input("y")).allocated());
PackedFunc set_input = mod.GetFunction("set_input", false);
PackedFunc set_input_zero_copy = mod.GetFunction("set_input_zero_copy", false);
PackedFunc run = mod.GetFunction("run", false);
PackedFunc get_output = mod.GetFunction("get_output", false);
set_input("x", a_val);
set_input_zero_copy("y", b_val);
run();
tvm::runtime::NDArray out = get_output(0);
float* p_out = (float*)out.ToDLPack()->dl_tensor.data;
// Check correctness.
for (int i = 0; i < n; ++i) {
CHECK_LT(std::fabs(p_out[i] - i*2), 1e-5);
}
}
int main(int argc, char ** argv) {
testing::InitGoogleTest(&argc, argv);
testing::FLAGS_gtest_death_test_style = "threadsafe";