Vulkan TVM Android Support (#1571)
This commit is contained in:
Родитель
764516a6b3
Коммит
2afe024809
|
@ -123,18 +123,25 @@ export TVM_NDK_CC=/opt/android-toolchain-arm64/bin/aarch64-linux-android-g++
|
|||
python android_rpc_test.py
|
||||
```
|
||||
|
||||
This will compile TVM IR to shared libraries (CPU and OpenCL) and run vector addition on your Android device. On my test device, it gives following results.
|
||||
This will compile TVM IR to shared libraries (CPU, OpenCL and Vulkan) and run vector addition on your Android device. To verify compiled TVM IR shared libraries on OpenCL target set [`'test_opencl = True'`](https://github.com/dmlc/tvm/blob/master/apps/android_rpc/tests/android_rpc_test.py#L25) and on Vulkan target set [`'test_vulkan = False'`](https://github.com/dmlc/tvm/blob/master/apps/android_rpc/tests/android_rpc_test.py#L27) in [tests/android_rpc_test.py](https://github.com/dmlc/tvm/blob/master/apps/android_rpc/tests/android_rpc_test.py), by default on CPU target will execute.
|
||||
On my test device, it gives following results.
|
||||
|
||||
```bash
|
||||
TVM: Initializing cython mode...
|
||||
[01:21:43] src/codegen/llvm/codegen_llvm.cc:75: set native vector to be 32 for target aarch64
|
||||
[01:21:43] src/runtime/opencl/opencl_device_api.cc:194: Initialize OpenCL platform 'Apple'
|
||||
[01:21:43] src/runtime/opencl/opencl_device_api.cc:214: opencl(0)='Iris' cl_device_id=0x1024500
|
||||
[01:21:44] src/codegen/llvm/codegen_llvm.cc:75: set native vector to be 32 for target aarch64
|
||||
Run GPU test ...
|
||||
0.000155807 secs/op
|
||||
Run CPU test ...
|
||||
0.00139824 secs/op
|
||||
0.000962932 secs/op
|
||||
|
||||
Run GPU(OpenCL Flavor) test ...
|
||||
0.000155807 secs/op
|
||||
|
||||
[23:29:34] /home/tvm/src/runtime/vulkan/vulkan_device_api.cc:674: Cannot initialize vulkan: [23:29:34] /home/tvm/src/runtime/vulkan/vulkan_device_api.cc:512: Check failed: __e == VK_SUCCESS Vulan Error, code=-9: VK_ERROR_INCOMPATIBLE_DRIVER
|
||||
|
||||
Stack trace returned 10 entries:
|
||||
[bt] (0) /home/user/.local/lib/python3.6/site-packages/tvm-0.4.0-py3.6-linux-x86_64.egg/tvm/libtvm.so(dmlc::StackTrace[abi:cxx11]()+0x53) [0x7f477f5399f3]
|
||||
.........
|
||||
|
||||
You can still compile vulkan module but cannot run locally
|
||||
Run GPU(Vulkan Flavor) test ...
|
||||
0.000225198 secs/op
|
||||
```
|
||||
|
||||
You can define your own TVM operators and test via this RPC app on your Android device to find the most optimized TVM schedule.
|
||||
|
|
|
@ -21,12 +21,48 @@ key = "android"
|
|||
arch = "arm64"
|
||||
target = "llvm -target=%s-linux-android" % arch
|
||||
|
||||
# whether enable to execute test on OpenCL target
|
||||
test_opencl = False
|
||||
# whether enable to execute test on Vulkan target
|
||||
test_vulkan = False
|
||||
|
||||
def test_rpc_module():
|
||||
# graph
|
||||
n = tvm.convert(1024)
|
||||
A = tvm.placeholder((n,), name='A')
|
||||
B = tvm.compute(A.shape, lambda *i: A(*i) + 1.0, name='B')
|
||||
a_np = np.random.uniform(size=1024).astype(A.dtype)
|
||||
temp = util.tempdir()
|
||||
|
||||
# Establish remote connection with target hardware
|
||||
tracker = rpc.connect_tracker(tracker_host, tracker_port)
|
||||
remote = tracker.request(key, priority=0,
|
||||
session_timeout=60)
|
||||
|
||||
# Compile the Graph for CPU target
|
||||
s = tvm.create_schedule(B.op)
|
||||
xo, xi = s[B].split(B.op.axis[0], factor=64)
|
||||
s[B].parallel(xi)
|
||||
s[B].pragma(xo, "parallel_launch_point")
|
||||
s[B].pragma(xi, "parallel_barrier_when_finish")
|
||||
f = tvm.build(s, [A, B], target, name="myadd_cpu")
|
||||
path_dso_cpu = temp.relpath("cpu_lib.so")
|
||||
f.export_library(path_dso_cpu, ndk.create_shared)
|
||||
|
||||
# Execute the portable graph on cpu target
|
||||
print('Run CPU test ...')
|
||||
ctx = remote.cpu(0)
|
||||
remote.upload(path_dso_cpu)
|
||||
f2 = remote.load_module("cpu_lib.so")
|
||||
a = tvm.nd.array(a_np, ctx)
|
||||
b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
|
||||
time_f = f2.time_evaluator(f2.entry_name, ctx, number=10)
|
||||
cost = time_f(a, b).mean
|
||||
print('%g secs/op\n' % cost)
|
||||
np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
|
||||
|
||||
# Compile the Graph for OpenCL target
|
||||
if test_opencl:
|
||||
s = tvm.create_schedule(B.op)
|
||||
xo, xi = s[B].split(B.op.axis[0], factor=64)
|
||||
s[B].bind(xi, tvm.thread_axis("threadIdx.x"))
|
||||
|
@ -34,46 +70,43 @@ def test_rpc_module():
|
|||
# Build the dynamic lib.
|
||||
# If we don't want to do metal and only use cpu, just set target to be target
|
||||
f = tvm.build(s, [A, B], "opencl", target_host=target, name="myadd")
|
||||
path_dso1 = temp.relpath("dev_lib2.so")
|
||||
f.export_library(path_dso1, ndk.create_shared)
|
||||
path_dso_cl = temp.relpath("dev_lib_cl.so")
|
||||
f.export_library(path_dso_cl, ndk.create_shared)
|
||||
|
||||
s = tvm.create_schedule(B.op)
|
||||
xo, xi = s[B].split(B.op.axis[0], factor=64)
|
||||
s[B].parallel(xi)
|
||||
s[B].pragma(xo, "parallel_launch_point")
|
||||
s[B].pragma(xi, "parallel_barrier_when_finish")
|
||||
f = tvm.build(s, [A, B], target, name="myadd_cpu")
|
||||
path_dso2 = temp.relpath("cpu_lib.so")
|
||||
f.export_library(path_dso2, ndk.create_shared)
|
||||
|
||||
tracker = rpc.connect_tracker(tracker_host, tracker_port)
|
||||
remote = tracker.request(key, priority=0,
|
||||
session_timeout=60)
|
||||
|
||||
print('Run CPU test ...')
|
||||
ctx = remote.cpu(0)
|
||||
remote.upload(path_dso2)
|
||||
f2 = remote.load_module("cpu_lib.so")
|
||||
a_np = np.random.uniform(size=1024).astype(A.dtype)
|
||||
a = tvm.nd.array(a_np, ctx)
|
||||
b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
|
||||
time_f = f2.time_evaluator(f2.entry_name, ctx, number=10)
|
||||
cost = time_f(a, b).mean
|
||||
print('%g secs/op' % cost)
|
||||
np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
|
||||
|
||||
|
||||
print('Run GPU test ...')
|
||||
print('Run GPU(OpenCL Flavor) test ...')
|
||||
ctx = remote.cl(0)
|
||||
remote.upload(path_dso1)
|
||||
f1 = remote.load_module("dev_lib2.so")
|
||||
a_np = np.random.uniform(size=1024).astype(A.dtype)
|
||||
remote.upload(path_dso_cl)
|
||||
f1 = remote.load_module("dev_lib_cl.so")
|
||||
a = tvm.nd.array(a_np, ctx)
|
||||
b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
|
||||
time_f = f1.time_evaluator(f1.entry_name, ctx, number=10)
|
||||
cost = time_f(a, b).mean
|
||||
print('%g secs/op' % cost)
|
||||
print('%g secs/op\n' % cost)
|
||||
np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
|
||||
|
||||
# Compile the Graph for Vulkan target
|
||||
if test_vulkan:
|
||||
s = tvm.create_schedule(B.op)
|
||||
xo, xi = s[B].split(B.op.axis[0], factor=64)
|
||||
s[B].bind(xi, tvm.thread_axis("threadIdx.x"))
|
||||
s[B].bind(xo, tvm.thread_axis("blockIdx.x"))
|
||||
# Build the dynamic lib.
|
||||
# If we don't want to do metal and only use cpu, just set target to be target
|
||||
f = tvm.build(s, [A, B], "vulkan", target_host=target, name="myadd")
|
||||
path_dso_vulkan = temp.relpath("dev_lib_vulkan.so")
|
||||
f.export_library(path_dso_vulkan, ndk.create_shared)
|
||||
|
||||
print('Run GPU(Vulkan Flavor) test ...')
|
||||
ctx = remote.vulkan(0)
|
||||
remote.upload(path_dso_vulkan)
|
||||
f1 = remote.load_module("dev_lib_vulkan.so")
|
||||
a = tvm.nd.array(a_np, ctx)
|
||||
b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
|
||||
time_f = f1.time_evaluator(f1.entry_name, ctx, number=10)
|
||||
cost = time_f(a, b).mean
|
||||
print('%g secs/op\n' % cost)
|
||||
np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_rpc_module()
|
||||
|
|
|
@ -30,6 +30,7 @@ public class TVMContext {
|
|||
MASK2STR.put(1, "cpu");
|
||||
MASK2STR.put(2, "gpu");
|
||||
MASK2STR.put(4, "opencl");
|
||||
MASK2STR.put(7, "vulkan");
|
||||
MASK2STR.put(8, "metal");
|
||||
MASK2STR.put(9, "vpi");
|
||||
|
||||
|
@ -38,6 +39,7 @@ public class TVMContext {
|
|||
STR2MASK.put("cuda", 2);
|
||||
STR2MASK.put("cl", 4);
|
||||
STR2MASK.put("opencl", 4);
|
||||
STR2MASK.put("vulkan", 7);
|
||||
STR2MASK.put("metal", 8);
|
||||
STR2MASK.put("vpi", 9);
|
||||
}
|
||||
|
@ -81,6 +83,19 @@ public class TVMContext {
|
|||
return opencl(0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a Vulkan device.
|
||||
* @param devId The device id
|
||||
* @return The created context
|
||||
*/
|
||||
public static TVMContext vulkan(int devId) {
|
||||
return new TVMContext(7, devId);
|
||||
}
|
||||
|
||||
public static TVMContext vulkan() {
|
||||
return vulkan(0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a metal device.
|
||||
* @param devId The device id
|
||||
|
|
|
@ -143,6 +143,24 @@ public class RPCSession {
|
|||
return cl(0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct remote OpenCL device.
|
||||
* @param devId device id.
|
||||
* @return Remote OpenCL context.
|
||||
*/
|
||||
public TVMContext vulkan(int devId) {
|
||||
return context(7, devId);
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct remote OpenCL device.
|
||||
* @return Remote OpenCL context.
|
||||
*/
|
||||
public TVMContext vulkan() {
|
||||
return vulkan(0);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Construct remote Metal device.
|
||||
* @param devId device id.
|
||||
|
|
|
@ -130,6 +130,10 @@ class RPCSession(object):
|
|||
"""Construct OpenCL device."""
|
||||
return self.context(4, dev_id)
|
||||
|
||||
def vulkan(self, dev_id=0):
|
||||
"""Construct Vulkan device."""
|
||||
return self.context(7, dev_id)
|
||||
|
||||
def metal(self, dev_id=0):
|
||||
"""Construct Metal device."""
|
||||
return self.context(8, dev_id)
|
||||
|
|
|
@ -696,6 +696,7 @@ var tvm_runtime = tvm_runtime || {};
|
|||
1 : "cpu",
|
||||
2 : "gpu",
|
||||
4 : "opencl",
|
||||
7 : "vulkan",
|
||||
8 : "metal",
|
||||
9 : "vpi",
|
||||
11 : "opengl",
|
||||
|
@ -706,6 +707,7 @@ var tvm_runtime = tvm_runtime || {};
|
|||
"cuda": 2,
|
||||
"cl": 4,
|
||||
"opencl": 4,
|
||||
"vulkan": 7,
|
||||
"metal": 8,
|
||||
"vpi": 9,
|
||||
"opengl": 11,
|
||||
|
|
Загрузка…
Ссылка в новой задаче