[NNVM][ONNX] Squeeze and Unsqueese operators. (#1339)

This commit is contained in:
Siva 2018-06-27 00:29:53 +05:30 коммит произвёл Tianqi Chen
Родитель 113b46ec80
Коммит 2f77a127be
2 изменённых файлов: 51 добавлений и 1 удалений

Просмотреть файл

@ -436,6 +436,16 @@ class Cast(OnnxOpConverter):
return AttrCvt(op_name='cast', transforms={'to': 'dtype'})(inputs, attr)
class Unsqueeze(OnnxOpConverter):
""" Operator converter for Unsqueeze.
"""
@classmethod
def _impl_v1(cls, inputs, attr, params):
for axes in attr['axes']:
inputs[0] = _sym.expand_dims(inputs[0], axis=axes, num_newaxis=1)
return inputs[0]
# compatible operators that do NOT require any conversion.
_identity_list = []
@ -543,7 +553,8 @@ def _get_convert_map(opset):
# 'Slice'
'Transpose': AttrCvt('transpose', {'perm': 'axes'}),
# 'Gather'
# 'Squeeze'
'Squeeze': Renamer('squeeze'),
'Unsqueeze': Unsqueeze.get_converter(opset),
'Pad': Pad.get_converter(opset),
'Shape': Shape.get_converter(opset),
}

Просмотреть файл

@ -107,6 +107,43 @@ def test_reshape_like():
np.testing.assert_allclose(ref_shape, tvm_out.shape)
def test_squeeze():
in_shape = (1, 3, 1, 3, 1, 1)
out_shape = (3, 3)
y = helper.make_node("Squeeze", ['in'], ['out'])
graph = helper.make_graph([y],
'squeeze_test',
inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))],
outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='squeeze_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape)
tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32')
np.testing.assert_allclose(out_shape, tvm_out.shape)
def test_unsqueeze():
in_shape = (3, 3)
axis = (0, 3, 4)
out_shape = (1, 3, 3, 1, 1)
y = helper.make_node("Unsqueeze", ['in'], ['out'], axes=list(axis))
graph = helper.make_graph([y],
'squeeze_test',
inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))],
outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='squeeze_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape)
tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32')
np.testing.assert_allclose(out_shape, tvm_out.shape)
if __name__ == '__main__':
# verify_super_resolution_example()
# verify_squeezenet1_1()
@ -114,3 +151,5 @@ if __name__ == '__main__':
verify_resnet18()
test_reshape()
test_reshape_like()
test_squeeze()
test_unsqueeze()