diff --git a/nnvm/python/nnvm/frontend/keras.py b/nnvm/python/nnvm/frontend/keras.py index d516d3f3..30c0a132 100644 --- a/nnvm/python/nnvm/frontend/keras.py +++ b/nnvm/python/nnvm/frontend/keras.py @@ -16,6 +16,14 @@ def _check_data_format(keras_layer): raise ValueError("Keras frontend currently supports data_format = channels_last only.") +def _get_pad_pair(input1d, kernel1d, stride1d): + out1d = (input1d + stride1d - 1) // stride1d + pad = np.maximum((out1d - 1) * stride1d + kernel1d - input1d, 0) + pad_before = pad // 2 + pad_after = pad - pad_before + return [pad_before, pad_after] + + def _convert_activation(insym, keras_layer, _): if isinstance(keras_layer, str): act_type = keras_layer @@ -120,6 +128,8 @@ def _convert_convolution(insym, keras_layer, symtab): dilation = [keras_layer.dilation_rate[0], keras_layer.dilation_rate[1]] else: dilation = [keras_layer.dilation_rate, keras_layer.dilation_rate] + kernel_h = (kernel_h - 1) * dilation[0] + 1 + kernel_w = (kernel_w - 1) * dilation[1] + 1 stride_h, stride_w = keras_layer.strides params = {'weight': symtab.new_const(weight), 'kernel_size': [kernel_h, kernel_w], @@ -141,14 +151,8 @@ def _convert_convolution(insym, keras_layer, symtab): elif keras_layer.padding == 'same': in_h = keras_layer.input.shape[1].value in_w = keras_layer.input.shape[2].value - out_h = (in_h + stride_h - 1) // stride_h - out_w = (in_w + stride_w - 1) // stride_w - pad_h = np.maximum((out_h - 1) * stride_h + kernel_h - in_h, 0) - pad_w = np.maximum((out_w - 1) * stride_w + kernel_w - in_w, 0) - pad_t = pad_h // 2 - pad_l = pad_w // 2 - pad_b = pad_h - pad_t - pad_r = pad_w - pad_l + pad_t, pad_b = _get_pad_pair(in_h, kernel_h, stride_h) + pad_l, pad_r = _get_pad_pair(in_w, kernel_w, stride_w) insym = _sym.pad(data=insym, pad_width=((0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r))) else: raise TypeError("Unsupported padding type : {}".format(keras_layer.padding)) @@ -187,14 +191,8 @@ def _convert_separable_convolution(insym, keras_layer, symtab): elif keras_layer.padding == 'same': in_h = keras_layer.input.shape[1].value in_w = keras_layer.input.shape[2].value - out_h = (in_h + stride_h - 1) // stride_h - out_w = (in_w + stride_w - 1) // stride_w - pad_h = np.maximum((out_h - 1) * stride_h + kernel_h - in_h, 0) - pad_w = np.maximum((out_w - 1) * stride_w + kernel_w - in_w, 0) - pad_t = pad_h // 2 - pad_l = pad_w // 2 - pad_b = pad_h - pad_t - pad_r = pad_w - pad_l + pad_t, pad_b = _get_pad_pair(in_h, kernel_h, stride_h) + pad_l, pad_r = _get_pad_pair(in_w, kernel_w, stride_w) insym = _sym.pad(data=insym, pad_width=( (0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r))) else: @@ -242,23 +240,18 @@ def _convert_pooling(insym, keras_layer, symtab): pool_h, pool_w = keras_layer.pool_size stride_h, stride_w = keras_layer.strides params = {'pool_size': [pool_h, pool_w], - 'strides': [stride_h, stride_w]} + 'strides': [stride_h, stride_w], + 'padding': [0, 0]} if keras_layer.padding == 'valid': - params['padding'] = [0, 0] + pass + # we insert a separate pad operator elif keras_layer.padding == 'same': in_h = keras_layer.input.shape[1].value in_w = keras_layer.input.shape[2].value - out_h = (in_h + stride_h - 1) // stride_h - out_w = (in_w + stride_w - 1) // stride_w - pad_h = np.maximum((out_h - 1) * stride_h + pool_h - in_h, 0) - pad_w = np.maximum((out_w - 1) * stride_w + pool_w - in_w, 0) - pad_t = pad_h // 2 - pad_l = pad_w // 2 - pad_b = pad_h - pad_t - pad_r = pad_w - pad_l - params['padding'] = [pad_t, pad_l] - if pad_b > pad_t and pad_r > pad_l: - params['ceil_mode'] = True + pad_t, pad_b = _get_pad_pair(in_h, pool_h, stride_h) + pad_l, pad_r = _get_pad_pair(in_w, pool_w, stride_w) + insym = _sym.pad(data=insym, pad_width=( + (0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r))) else: raise TypeError("Unsupported padding type : {}".format(keras_layer.padding)) if pool_type == 'MaxPooling2D': @@ -349,13 +342,11 @@ def _convert_concat(insym, keras_layer, _): def _convert_reshape(insym, keras_layer, _): - shape = keras_layer.shape if hasattr(keras_layer, 'shape') else \ - keras_layer.target_shape if hasattr(keras_layer, 'target_shape') else\ - None - + shape = keras_layer.shape if hasattr(keras_layer, 'shape') \ + else keras_layer.target_shape if hasattr(keras_layer, 'target_shape') \ + else None if shape is None: raise TypeError("No shape attribute in reshape layer: {}".format(keras_layer)) - return _sym.reshape(insym, shape=shape) @@ -485,13 +476,11 @@ def from_keras(model): else: predecessors = [] inbound_nodes = keras_layer.inbound_nodes if hasattr(keras_layer, 'inbound_nodes') \ - else keras_layer._inbound_nodes if hasattr(keras_layer, '_inbound_nodes') \ - else None - + else keras_layer._inbound_nodes if hasattr(keras_layer, '_inbound_nodes') \ + else None if inbound_nodes is None: raise TypeError("Unknown layer type or unsupported Keras version : {}" .format(keras_layer)) - for node in inbound_nodes: for pred in node.inbound_layers: predecessors.append(pred.name)