This commit is contained in:
Yao Wang 2018-07-18 09:08:07 -07:00 коммит произвёл Tianqi Chen
Родитель 00c87b376d
Коммит 8dbe779466
6 изменённых файлов: 57 добавлений и 29 удалений

Просмотреть файл

@ -56,6 +56,8 @@ def _pooling(inputs, attrs):
new_attrs['strides'] = attrs.get('stride', (1, 1))
new_attrs['padding'] = attrs.get('pad', (0, 0))
new_attrs['ceil_mode'] = (attrs.get('pooling_convention', 'valid') == 'full')
if pool_type == 'avg':
new_attrs['count_include_pad'] = attrs.get('count_include_pad', True)
return _get_nnvm_op(op_name)(*inputs, **new_attrs)
def _batch_norm(inputs, attrs):

Просмотреть файл

@ -10,6 +10,20 @@ from nnvm.testing.config import ctx_list
def test_conv2d():
def run_test_conv2d(sym, dtype, dshape, kshape, oshape, shape_dict, padding):
for target, ctx in ctx_list():
graph, lib, _ = nnvm.compiler.build(sym, target, shape_dict)
m = graph_runtime.create(graph, lib, ctx)
data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype))
kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype))
bias = tvm.nd.array(np.random.uniform(size=kshape[0]).astype(dtype))
m.run(x=data, y_weight=kernel, y_bias=bias)
out = m.get_output(0, tvm.nd.empty(oshape, dtype))
c_np = topi.testing.conv2d_nchw_python(
data.asnumpy(), kernel.asnumpy(), 1, padding)
c_np = c_np + bias.asnumpy().reshape(kshape[0], 1, 1)
np.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5)
x = sym.Variable("x")
y = sym.conv2d(x, channels=10, kernel_size=(3,3),
name="y", padding=(1,1))
@ -18,18 +32,17 @@ def test_conv2d():
kshape = (10, 3, 3, 3)
oshape = (1, 10, 18, 18)
shape_dict = {"x": dshape}
for target, ctx in ctx_list():
graph, lib, _ = nnvm.compiler.build(y, target, shape_dict)
m = graph_runtime.create(graph, lib, ctx)
data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype))
kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype))
bias = tvm.nd.array(np.random.uniform(size=kshape[0]).astype(dtype))
m.run(x=data, y_weight=kernel, y_bias=bias)
out = m.get_output(0, tvm.nd.empty(oshape, dtype))
c_np = topi.testing.conv2d_nchw_python(
data.asnumpy(), kernel.asnumpy(), 1, 1)
c_np = c_np + bias.asnumpy().reshape(kshape[0], 1, 1)
np.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5)
run_test_conv2d(y, dtype, dshape, kshape, oshape, shape_dict, (1,1))
x = sym.Variable("x")
y = sym.conv2d(x, channels=10, kernel_size=(1,3),
name="y", padding=(0,1))
dtype = "float32"
dshape = (1, 3, 224, 224)
kshape = (10, 3, 1, 3)
oshape = (1, 10, 224, 224)
shape_dict = {"x": dshape}
run_test_conv2d(y, dtype, dshape, kshape, oshape, shape_dict, (0,1))
def test_mixed_precision():

Просмотреть файл

@ -141,6 +141,14 @@ def test_forward_expand_dims():
mx_sym = mx.sym.expand_dims(data, axis=1)
verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 1, 3, 4))
def test_forward_pooling():
data = mx.sym.var('data')
mx_sym = mx.sym.Pooling(data, kernel=(3, 3), pad=(1, 1), pool_type='avg')
verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 8, 8))
mx_sym = mx.sym.Pooling(data, kernel=(3, 3), pad=(1, 1), pool_type='max')
verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 8, 8))
if __name__ == '__main__':
test_forward_mlp()
test_forward_vgg()
@ -154,3 +162,4 @@ if __name__ == '__main__':
test_forward_split()
test_forward_split_squeeze()
test_forward_expand_dims()
test_forward_pooling()

Просмотреть файл

@ -1,4 +1,4 @@
# pylint: disable=invalid-name, line-too-long, unused-variable, too-many-locals
# pylint: disable=invalid-name, line-too-long, unused-variable, too-many-locals, too-many-branches
"""Convolution in python"""
import numpy as np
import scipy.signal
@ -18,8 +18,8 @@ def conv2d_nchw_python(a_np, w_np, stride, padding):
stride : int or a list/tuple of two ints
Stride size, or [stride_height, stride_width]
padding : int or str
Padding size, or ['VALID', 'SAME']
padding : int or str or a list/tuple of two ints
Padding size, or ['VALID', 'SAME'], or [pad_height, pad_width]
Returns
-------
@ -34,12 +34,11 @@ def conv2d_nchw_python(a_np, w_np, stride, padding):
stride_h, stride_w = stride
if isinstance(padding, int):
pad_h = pad_w = padding * 2
elif padding == 'VALID':
pad_h = 0
pad_w = 0
else: # 'SAME'
pad_h = kernel_h - 1
pad_w = kernel_w - 1
elif isinstance(padding, (list, tuple)):
pad_h, pad_w = padding[0] * 2, padding[1] * 2
else:
pad_h = 0 if padding == 'VALID' else kernel_h - 1
pad_w = 0 if padding == 'VALID' else kernel_w - 1
pad_top = int(np.ceil(float(pad_h) / 2))
pad_bottom = pad_h - pad_top
pad_left = int(np.ceil(float(pad_w) / 2))
@ -53,9 +52,14 @@ def conv2d_nchw_python(a_np, w_np, stride, padding):
for n in range(batch):
for f in range(out_channel):
for c in range(in_channel):
if pad_h > 0:
if pad_h > 0 or pad_w > 0:
apad = np.zeros((in_height + pad_h, in_width + pad_w))
apad[pad_top:-pad_bottom, pad_left:-pad_right] = a_np[n, c]
if pad_h == 0:
apad[:, pad_left:-pad_right] = a_np[n, c]
elif pad_w == 0:
apad[pad_top:-pad_bottom, :] = a_np[n, c]
else:
apad[pad_top:-pad_bottom, pad_left:-pad_right] = a_np[n, c]
else:
apad = a_np[n, c]
out = scipy.signal.convolve2d(

Просмотреть файл

@ -56,7 +56,7 @@ def _declaration_conv(data, kernel, stride, padding, layout, out_dtype):
out_height = (in_height + 2 * HPAD - kernel_height) // HSTR + 1
out_width = (in_width + 2 * WPAD - kernel_width) // WSTR + 1
DOPAD = (HPAD != 0 and WPAD != 0)
DOPAD = (HPAD != 0 or WPAD != 0)
if DOPAD:
data_pad = pad(data, (0, 0, HPAD, WPAD), name="data_pad")
else:
@ -95,7 +95,7 @@ def _schedule_conv(s, data, data_pad, data_vec, kernel, kernel_vec, conv_out, ou
sch = _get_schedule(wkl)
HPAD, WPAD = wkl.hpad, wkl.wpad
DOPAD = (HPAD != 0 and WPAD != 0)
DOPAD = (HPAD != 0 or WPAD != 0)
A, W = data, kernel_vec
A0, A1 = data_pad, data_vec
@ -163,7 +163,7 @@ def _declaration_conv_NCHWc(wkl, sch, data, kernel):
out_height = (wkl.height + 2 * HPAD - wkl.hkernel) // HSTR + 1
out_width = (wkl.width + 2 * WPAD - wkl.wkernel) // WSTR + 1
DOPAD = (HPAD != 0 and WPAD != 0)
DOPAD = (HPAD != 0 or WPAD != 0)
if DOPAD:
data_pad = pad(data, (0, 0, HPAD, WPAD, 0), name="data_pad")
else:

Просмотреть файл

@ -58,7 +58,7 @@ def _declaration_conv(data, kernel, stride, padding, layout, out_dtype):
out_width = (in_width + 2 * WPAD - kernel_width) // WSTR + 1
# pack data
DOPAD = (HPAD != 0 and WPAD != 0)
DOPAD = (HPAD != 0 or WPAD != 0)
if DOPAD:
data_pad = pad(data, (0, 0, HPAD, WPAD), name="data_pad")
else:
@ -108,7 +108,7 @@ def _schedule_conv(s, data, data_pad, data_vec, kernel, kernel_vec, conv_out, ou
sch = _get_schedule(wkl)
HPAD, WPAD = wkl.hpad, wkl.wpad
DOPAD = (HPAD != 0 and WPAD != 0)
DOPAD = (HPAD != 0 or WPAD != 0)
A, W = data, kernel_vec
A0, A1 = data_pad, data_vec
@ -181,7 +181,7 @@ def _declaration_conv_NCHWc(wkl, sch, data, kernel):
out_width = (wkl.width + 2 * WPAD - wkl.wkernel) // WSTR + 1
# pack data
DOPAD = (HPAD != 0 and WPAD != 0)
DOPAD = (HPAD != 0 or WPAD != 0)
if DOPAD:
data_pad = pad(data, (0, 0, HPAD, WPAD, 0), name="data_pad")
else: