[Relay][Prelude] Remove Peano nats from the prelude (#3045)

This commit is contained in:
Steven S. Lyubomirsky 2019-05-22 13:57:53 -07:00 коммит произвёл Tianqi Chen
Родитель c93235d77f
Коммит 95bfd4a242
8 изменённых файлов: 327 добавлений и 146 удалений

Просмотреть файл

@ -17,7 +17,8 @@
# pylint: disable=no-else-return, unidiomatic-typecheck, invalid-name
"""Adds certain standard global functions and ADT definitions to the module."""
from .ty import GlobalTypeVar, TypeVar, FuncType, TupleType, scalar_type
from .expr import Var, Function, GlobalVar, Let, If, Tuple, TupleGetItem
from .expr import Var, Function, GlobalVar, Let, If, Tuple, TupleGetItem, const
from .op.tensor import add, subtract, equal
from .adt import Constructor, TypeData, Clause, Match
from .adt import PatternConstructor, PatternVar, PatternWildcard
@ -34,6 +35,7 @@ class Prelude:
self.cons = Constructor("cons", [a, self.l(a)], self.l)
self.mod[self.l] = TypeData(self.l, [a], [self.nil, self.cons])
def define_list_hd(self):
"""Defines a function to get the head of a list. Assume the list has at least one
element.
@ -48,6 +50,7 @@ class Prelude:
cons_case = Clause(PatternConstructor(self.cons, [PatternVar(y), PatternVar(z)]), y)
self.mod[self.hd] = Function([x], Match(x, [cons_case]), a, [a])
def define_list_tl(self):
"""Defines a function to get the tail of a list.
@ -61,39 +64,44 @@ class Prelude:
cons_case = Clause(PatternConstructor(self.cons, [PatternVar(y), PatternVar(z)]), z)
self.mod[self.tl] = Function([x], Match(x, [cons_case]), self.l(a), [a])
def define_list_nth(self):
"""Defines a function to get the nth element of a list.
nth(l) : list[a] -> a
nth(l) : list[a] -> Tensor[(), int32] -> a
"""
self.nth = GlobalVar("nth")
a = TypeVar("a")
x = Var("x", self.l(a))
n = Var("n", self.nat())
n = Var("n", scalar_type('int32'))
body = If(equal(n, const(0)),
self.hd(x),
self.nth(self.tl(x), subtract(n, const(1))))
self.mod[self.nth] = Function([x, n], body, a, [a])
y = Var("y")
z_case = Clause(PatternConstructor(self.z), self.hd(x))
s_case = Clause(PatternConstructor(self.s, [PatternVar(y)]), self.nth(self.tl(x), y))
self.mod[self.nth] = Function([x, n], Match(n, [z_case, s_case]), a, [a])
def define_list_update(self):
"""Defines a function to update the nth element of a list and return the updated list.
update(l, i, v) : list[a] -> nat -> a -> list[a]
update(l, i, v) : list[a] -> Tensor[(), int32] -> a -> list[a]
"""
self.update = GlobalVar("update")
a = TypeVar("a")
l = Var("l", self.l(a))
n = Var("n", self.nat())
n = Var("n", scalar_type('int32'))
v = Var("v", a)
y = Var("y")
body = If(equal(n, const(0)),
self.cons(v, self.tl(l)),
self.cons(self.hd(l),
self.update(self.tl(l),
subtract(n, const(1)),
v)))
z_case = Clause(PatternConstructor(self.z), self.cons(v, self.tl(l)))
s_case = Clause(PatternConstructor(self.s, [PatternVar(y)]),
self.cons(self.hd(l), self.update(self.tl(l), y, v)))
self.mod[self.update] = Function([l, n, v], body, self.l(a), [a])
self.mod[self.update] = Function([l, n, v], Match(n, [z_case, s_case]), self.l(a), [a])
def define_list_map(self):
"""Defines a function for mapping a function over a list's
@ -114,6 +122,7 @@ class Prelude:
self.cons(f(y), self.map(f, z)))
self.mod[self.map] = Function([f, x], Match(x, [nil_case, cons_case]), self.l(b), [a, b])
def define_list_foldl(self):
"""Defines a left-way fold over a list.
@ -136,6 +145,7 @@ class Prelude:
self.mod[self.foldl] = Function([f, av, bv],
Match(bv, [nil_case, cons_case]), a, [a, b])
def define_list_foldr(self):
"""Defines a right-way fold over a list.
@ -158,6 +168,7 @@ class Prelude:
self.mod[self.foldr] = Function([f, bv, av],
Match(av, [nil_case, cons_case]), b, [a, b])
def define_list_foldr1(self):
"""Defines a right-way fold over a nonempty list.
@ -196,6 +207,7 @@ class Prelude:
self.foldr(updater, l2, l1),
self.l(a), [a])
def define_list_filter(self):
"""Defines a function that filters a list.
@ -214,6 +226,7 @@ class Prelude:
If(f(h), self.cons(h, self.filter(f, t)), self.filter(f, t)))
self.mod[self.filter] = Function([f, l], Match(l, [nil_case, cons_case]), self.l(a), [a])
def define_list_zip(self):
"""Defines a function that combines two lists into a list of tuples of their elements.
@ -238,6 +251,7 @@ class Prelude:
self.mod[self.zip] = Function([l1, l2], Match(l1, [nil_case, outer_cons_case]),
self.l(TupleType([a, b])), [a, b])
def define_list_rev(self):
"""Defines a function that reverses a list.
@ -253,6 +267,7 @@ class Prelude:
self.foldl(updater, self.nil(), l),
self.l(a), [a])
def define_list_map_accumr(self):
"""Defines an accumulative map, which is a fold that simulataneously updates
an accumulator value and a list of results.
@ -282,6 +297,7 @@ class Prelude:
TupleType([a, self.l(c)]),
[a, b, c])
def define_list_map_accuml(self):
"""Defines an accumulative map, which is a fold that simulataneously updates
an accumulator value and a list of results.
@ -321,6 +337,7 @@ class Prelude:
self.none = Constructor("none", [], self.optional)
self.mod[self.optional] = TypeData(self.optional, [a], [self.some, self.none])
def define_list_unfoldr(self):
"""Defines a function that builds up a list starting from a seed value.
@ -343,6 +360,7 @@ class Prelude:
self.mod[self.unfoldr] = Function([f, s], Match(f(s), [none_case, some_case]),
self.l(b), [a, b])
def define_list_unfoldl(self):
"""Defines a function that builds up a list starting from a seed value.
@ -362,52 +380,29 @@ class Prelude:
self.rev(self.unfoldr(f, s)),
self.l(b), [a, b])
def define_nat_adt(self):
"""Defines a Peano (unary) natural number ADT.
Zero is represented by z(). s(n) adds 1 to a nat n."""
self.nat = GlobalTypeVar("nat")
self.z = Constructor("z", [], self.nat)
self.s = Constructor("s", [self.nat()], self.nat)
self.mod[self.nat] = TypeData(self.nat, [], [self.z, self.s])
def define_nat_double(self):
"""Defines a function that doubles a nat."""
self.double = GlobalVar("double")
x = Var("x", self.nat())
y = Var("y")
z_case = Clause(PatternConstructor(self.z), self.z())
s_case = Clause(PatternConstructor(self.s, [PatternVar(y)]),
self.s(self.s(self.double(y))))
self.mod[self.double] = Function([x], Match(x, [z_case, s_case]))
def define_nat_add(self):
"""Defines a function that adds two nats."""
self.add = GlobalVar("add")
x = Var("x", self.nat())
y = Var("y", self.nat())
a = Var("a")
z_case = Clause(PatternConstructor(self.z), y)
s_case = Clause(PatternConstructor(self.s, [PatternVar(a)]),
self.s(self.add(a, y)))
self.mod[self.add] = Function([x, y], Match(x, [z_case, s_case]))
def define_list_sum(self):
"""Defines a function that computes the sum of a list of nats."""
"""Defines a function that computes the sum of a list of integer scalars."""
self.sum = GlobalVar("sum")
a = Var("a", self.l(self.nat()))
self.mod[self.sum] = Function([a], self.foldl(self.add, self.z(), a))
a = Var("a", self.l(scalar_type('int32')))
x = Var('x')
y = Var('y')
addf = Function([x, y], add(x, y))
self.mod[self.sum] = Function([a], self.foldl(addf, const(0), a))
def define_list_length(self):
"""Defines a function that returns the length of a list as a nat"""
"""Defines a function that returns the length of a list"""
self.length = GlobalVar("length")
a = TypeVar("a")
x = Var("x", self.l(a))
y = Var("y")
nil_case = Clause(PatternConstructor(self.nil), self.z())
nil_case = Clause(PatternConstructor(self.nil), const(0))
cons_case = Clause(PatternConstructor(self.cons, [PatternWildcard(), PatternVar(y)]),
self.s(self.length(y)))
add(const(1), self.length(y)))
self.mod[self.length] = Function([x],
Match(x, [nil_case, cons_case]), None, [a])
Match(x, [nil_case, cons_case]), scalar_type('int32'), [a])
def define_tree_adt(self):
"""Defines a tree ADT. A tree can contain any type.
@ -420,6 +415,7 @@ class Prelude:
self.rose = Constructor("rose", [a, self.l(self.tree(a))], self.tree)
self.mod[self.tree] = TypeData(self.tree, [a], [self.rose])
def define_tree_map(self):
"""Defines a function that maps over a tree. The function
is applied to each subtree's contents.
@ -439,23 +435,24 @@ class Prelude:
self.mod[self.tmap] = Function([f, t],
Match(t, [rose_case]), self.tree(b), [a, b])
def define_tree_size(self):
"""Defines a function that computes the size of a tree as a nat.
Signature: fn<a>(t : tree[a]) -> nat
def define_tree_size(self):
"""Defines a function that computes the size of a tree.
Signature: fn<a>(t : tree[a]) -> Tensor[(), int32]
"""
self.size = GlobalVar("size")
a = TypeVar("a")
t = Var("t", self.tree(a))
x = Var("x", self.tree(a))
z = Var("z")
rose_case = Clause(PatternConstructor(self.rose, [PatternWildcard(), PatternVar(z)]),
self.s(self.sum(self.map(Function([x], self.size(x)), z))))
add(const(1), self.sum(self.map(self.size, z))))
self.mod[self.size] = Function([t],
Match(t, [rose_case]), self.nat(), [a])
Match(t, [rose_case]), scalar_type('int32'), [a])
def define_id(self):
"""Defines a function that return it's argument.
"""Defines a function that return its argument.
Signature: fn<a>(x : a) -> a
"""
@ -466,7 +463,7 @@ class Prelude:
def define_compose(self):
"""Defines a function that compose two function.
"""Defines a function that composes two function.
Signature: fn<a, b, c>(f : fn(b) -> c, g : fn(a) -> b) -> fn(a) -> c
"""
@ -484,24 +481,26 @@ class Prelude:
def define_iterate(self):
"""Define a function that take a number n, a function f,
and return a closure that apply f n time on it's argument.
"""Defines a function that take a number n and a function f;
returns a closure that takes an argument and applies f
n times to its argument.
Signature: fn<a>(n : nat, f : fn(a) -> a) -> fn(a) -> a
Signature: fn<a>(f : fn(a) -> a, n : Tensor[(), int32]) -> fn(a) -> a
"""
self.iterate = GlobalVar("iterate")
a = TypeVar("a")
f = Var("f", FuncType([a], a))
x = Var("x", self.nat())
y = Var("y", self.nat())
z_case = Clause(PatternConstructor(self.z), self.id)
s_case = Clause(PatternConstructor(self.s, [PatternVar(y)]),
self.compose(f, self.iterate(f, y)))
x = Var("x", scalar_type('int32'))
body = If(equal(x, const(0)),
self.id,
self.compose(f,
self.iterate(f, subtract(x, const(1)))))
self.mod[self.iterate] = Function([f, x],
Match(x, [z_case, s_case]),
body,
FuncType([a], a),
[a])
def __init__(self, mod):
self.mod = mod
self.define_list_adt()
@ -522,9 +521,6 @@ class Prelude:
self.define_list_unfoldr()
self.define_list_unfoldl()
self.define_nat_adt()
self.define_nat_double()
self.define_nat_add()
self.define_list_length()
self.define_list_nth()
self.define_list_update()

Просмотреть файл

@ -30,3 +30,4 @@ from . import densenet
from .config import ctx_list
from .init import create_workload
from .nat import add_nat_definitions, count, make_nat_value, make_nat_expr

Просмотреть файл

@ -0,0 +1,184 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Defines a unary natural number (Peano natural number) abstract
data type for Relay and provides some utility functions for it.
Nats are useful for testing purposes, as they make it easy to write
test cases for recursion and pattern matching."""
from tvm.relay.adt import Constructor, TypeData, Clause, Match, PatternConstructor, PatternVar
from tvm.relay.backend.interpreter import ConstructorValue
from tvm.relay.expr import Var, Function, GlobalVar
from tvm.relay.ty import GlobalTypeVar, TypeVar, FuncType
def define_nat_adt(prelude):
"""Defines a Peano (unary) natural number ADT.
Zero is represented by z(). s(n) adds 1 to a nat n.
Adds the fields nat, z, and s to the preluide, representing
(respectively) the nat ADT and the z and s constructors.
"""
prelude.nat = GlobalTypeVar("nat")
prelude.z = Constructor("z", [], prelude.nat)
prelude.s = Constructor("s", [prelude.nat()], prelude.nat)
prelude.mod[prelude.nat] = TypeData(prelude.nat, [], [prelude.z, prelude.s])
def define_nat_double(prelude):
"""Defines a function that doubles a nat. Adds a field called
'double' to the prelude, giving the GlobalVar pointing to
the function.
"""
prelude.double = GlobalVar("double")
x = Var("x", prelude.nat())
y = Var("y")
z_case = Clause(PatternConstructor(prelude.z), prelude.z())
s_case = Clause(PatternConstructor(prelude.s, [PatternVar(y)]),
prelude.s(prelude.s(prelude.double(y))))
prelude.mod[prelude.double] = Function([x], Match(x, [z_case, s_case]))
def define_nat_add(prelude):
"""Defines a function that adds two nats and adds a field to the
prelude 'add' giving the GlobalVar pointing to that function.
"""
prelude.add = GlobalVar("add")
x = Var("x", prelude.nat())
y = Var("y", prelude.nat())
a = Var("a")
z_case = Clause(PatternConstructor(prelude.z), y)
s_case = Clause(PatternConstructor(prelude.s, [PatternVar(a)]),
prelude.s(prelude.add(a, y)))
prelude.mod[prelude.add] = Function([x, y], Match(x, [z_case, s_case]))
# versions of prelude functions that use nats instead of scalars
def define_nat_nth(prelude):
"""Defines a function to get the nth eleemnt of a list using
a nat to index into the list.
nat_nth(l, n): fun<a>(list[a], nat) -> a
"""
prelude.nat_nth = GlobalVar("nat_nth")
a = TypeVar("a")
x = Var("x", prelude.l(a))
n = Var("n", prelude.nat())
y = Var("y")
z_case = Clause(PatternConstructor(prelude.z), prelude.hd(x))
s_case = Clause(PatternConstructor(prelude.s, [PatternVar(y)]),
prelude.nat_nth(prelude.tl(x), y))
prelude.mod[prelude.nat_nth] = Function([x, n],
Match(n, [z_case, s_case]),
a, [a])
def define_nat_update(prelude):
"""Defines a function to update the nth element of a list and return the updated list.
nat_update(l, i, v) : fun<a>(list[a], nat, a) -> list[a]
"""
prelude.nat_update = GlobalVar("nat_update")
a = TypeVar("a")
# pylint: disable=invalid-name
l = Var("l", prelude.l(a))
n = Var("n", prelude.nat())
v = Var("v", a)
y = Var("y")
z_case = Clause(PatternConstructor(prelude.z),
prelude.cons(v, prelude.tl(l)))
s_case = Clause(PatternConstructor(prelude.s, [PatternVar(y)]),
prelude.cons(
prelude.hd(l),
prelude.nat_update(prelude.tl(l), y, v)))
prelude.mod[prelude.nat_update] = Function([l, n, v],
Match(n, [z_case, s_case]),
prelude.l(a), [a])
def define_nat_iterate(prelude):
"""Defines a function that takes a number n and a function f;
returns a closure that takes an argument and applies f
n times to its argument.
Signature: fn<a>(fn(a) -> a, nat) -> fn(a) -> a
"""
prelude.nat_iterate = GlobalVar("nat_iterate")
a = TypeVar("a")
f = Var("f", FuncType([a], a))
x = Var("x", prelude.nat())
y = Var("y", prelude.nat())
z_case = Clause(PatternConstructor(prelude.z), prelude.id)
s_case = Clause(PatternConstructor(prelude.s, [PatternVar(y)]),
prelude.compose(f, prelude.nat_iterate(f, y)))
prelude.mod[prelude.nat_iterate] = Function([f, x],
Match(x, [z_case, s_case]),
FuncType([a], a),
[a])
def add_nat_definitions(prelude):
"""Given a Relay prelude, adds a Peano nat ADT, as well as functions
for adding nats and doubling nats. It also adds versions of
update, nth, and iterate that take nats instead of scalars (the
names are prefixed with 'nat_')."""
define_nat_adt(prelude)
define_nat_double(prelude)
define_nat_add(prelude)
define_nat_nth(prelude)
define_nat_update(prelude)
define_nat_iterate(prelude)
# helper functions for working with nats
def count(n):
"""Takes a ConstructorValue corresponding to a nat ADT
and converts it into a Python integer. This is an example of
using an ADT value in Python.
"""
assert isinstance(n, ConstructorValue)
if n.constructor.name_hint == 'z':
return 0
assert n.constructor.name_hint == 's'
return 1 + count(n.fields[0])
def make_nat_value(prelude, n):
"""The inverse of count(): Given a non-negative Python integer,
constructs a ConstructorValue representing that value as a nat.
"""
if n == 0:
return ConstructorValue(prelude.z, [], [])
return ConstructorValue(prelude.s, [make_nat_value(prelude, n - 1)], [])
def make_nat_expr(prelude, n):
"""Given a non-negative Python integer, constructs a Python
expression representing that integer's value as a nat.
"""
assert n >= 0
ret = prelude.z()
while n > 0:
ret = prelude.s(ret)
n = n - 1
return ret

Просмотреть файл

@ -14,15 +14,19 @@
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
import tvm
from tvm import relay
from tvm.relay.ir_pass import infer_type
from tvm.relay.backend.interpreter import Value, TupleValue, ConstructorValue
from tvm.relay import testing, create_executor
from tvm.relay.prelude import Prelude
from tvm.relay.testing import add_nat_definitions, count, make_nat_value, make_nat_expr
mod = relay.Module()
p = Prelude(mod)
add_nat_definitions(p)
ctx = tvm.context("llvm", 0)
intrp = create_executor(mod=mod, ctx=ctx, target="llvm")
@ -67,15 +71,6 @@ size = p.size
compose = p.compose
iterate = p.iterate
# this is an example of using the adt value in python side
def count(n):
assert isinstance(n, ConstructorValue)
if n.constructor.name_hint == 's':
return 1 + count(n.fields[0])
else:
assert n.constructor.name_hint == 'z'
return 0
# this is an example of creating the adt value in python side
def make_nat(n):
if n != 0:
@ -83,7 +78,7 @@ def make_nat(n):
else:
return ConstructorValue(z, [], [])
def build_nat(n):
def make_nat_expr(n):
assert n >= 0
ret = z()
while n > 0:
@ -115,8 +110,14 @@ def tree_to_dict(t):
ret['children'].append(l)
return ret
# turns a scalar-valued relay tensor value into a python number
def get_scalar(tv):
return tv.asnumpy().item()
def test_nat_value():
assert count(make_nat(10)) == 10
assert count(make_nat_value(p, 10)) == 10
assert count(intrp.evaluate(s(s(z())))) == 2
@ -145,7 +146,7 @@ def test_hd_tl():
expected = list(range(10))
l = nil()
for i in reversed(expected):
l = cons(build_nat(i), l)
l = cons(make_nat_expr(i), l)
got = []
for i in range(len(expected)):
@ -158,36 +159,35 @@ def test_nth():
expected = list(range(10))
l = nil()
for i in reversed(expected):
l = cons(build_nat(i), l)
l = cons(relay.const(i), l)
got = []
for i in range(len(expected)):
got.append(count(intrp.evaluate(nth(l, build_nat(i)))))
item = intrp.evaluate(nth(l, relay.const(i)))
assert get_scalar(item) == i
assert got == expected
def test_update():
expected = list(range(10))
l = nil()
# create zero initialized list
for i in range(len(expected)):
l = cons(build_nat(0), l)
l = cons(make_nat_expr(0), l)
# set value
for i, v in enumerate(expected):
l = update(l, build_nat(i), build_nat(v))
l = update(l, relay.const(i), make_nat_expr(v))
got = []
for i in range(len(expected)):
got.append(count(intrp.evaluate(nth(l, build_nat(i)))))
got.append(count(intrp.evaluate(nth(l, relay.const(i)))))
assert got == expected
def test_length():
a = relay.TypeVar("a")
assert mod[length].checked_type == relay.FuncType([l(a)], nat(), [a])
assert mod[length].checked_type == relay.FuncType([l(a)], relay.scalar_type('int32'), [a])
res = intrp.evaluate(length(cons(z(), cons(z(), cons(z(), nil())))))
assert count(res) == 3
assert get_scalar(res) == 3
def test_map():
@ -216,9 +216,9 @@ def test_foldl():
y = relay.Var("y")
rev_dup = relay.Function([y, x], cons(x, cons(x, y)))
res = intrp.evaluate(foldl(rev_dup, nil(),
cons(build_nat(1),
cons(build_nat(2),
cons(build_nat(3), nil())))))
cons(make_nat_expr(1),
cons(make_nat_expr(2),
cons(make_nat_expr(3), nil())))))
reversed = to_list(res)
assert len(reversed) == 6
assert count(reversed[0]) == 3 and count(reversed[1]) == 3
@ -237,9 +237,9 @@ def test_foldr():
y = relay.Var("y")
identity = relay.Function([x, y], cons(x, y))
res = intrp.evaluate(foldr(identity, nil(),
cons(build_nat(1),
cons(build_nat(2),
cons(build_nat(3), nil())))))
cons(make_nat_expr(1),
cons(make_nat_expr(2),
cons(make_nat_expr(3), nil())))))
same = to_list(res)
assert len(same) == 3
assert count(same[0]) == 1 and count(same[1]) == 2 and count(same[2]) == 3
@ -255,25 +255,25 @@ def test_foldr1():
y = relay.Var("y")
f = relay.Function([x, y], add(x, y))
res = intrp.evaluate(foldr1(f,
cons(build_nat(1),
cons(build_nat(2),
cons(build_nat(3), nil())))))
cons(make_nat_expr(1),
cons(make_nat_expr(2),
cons(make_nat_expr(3), nil())))))
assert count(res) == 6
def test_sum():
assert mod[sum].checked_type == relay.FuncType([l(nat())], nat())
res = intrp.evaluate(sum(cons(build_nat(1), cons(build_nat(2), nil()))))
assert count(res) == 3
assert mod[sum].checked_type == relay.FuncType([l(relay.scalar_type('int32'))], relay.scalar_type('int32'))
res = intrp.evaluate(sum(cons(relay.const(1), cons(relay.const(2), nil()))))
assert get_scalar(res) == 3
def test_concat():
a = relay.TypeVar("a")
assert mod[concat].checked_type == relay.FuncType([l(a), l(a)], l(a), [a])
l1 = cons(build_nat(1), cons(build_nat(2), nil()))
l2 = cons(build_nat(3), cons(build_nat(4), nil()))
l1 = cons(make_nat_expr(1), cons(make_nat_expr(2), nil()))
l2 = cons(make_nat_expr(3), cons(make_nat_expr(4), nil()))
res = intrp.evaluate(concat(l1, l2))
catted = to_list(res)
@ -305,12 +305,12 @@ def test_filter():
]))
res = intrp.evaluate(
filter(greater_than_one,
cons(build_nat(1),
cons(build_nat(1),
cons(build_nat(3),
cons(build_nat(1),
cons(build_nat(5),
cons(build_nat(1),
cons(make_nat_expr(1),
cons(make_nat_expr(1),
cons(make_nat_expr(3),
cons(make_nat_expr(1),
cons(make_nat_expr(5),
cons(make_nat_expr(1),
nil()))))))))
filtered = to_list(res)
assert len(filtered) == 2
@ -325,7 +325,7 @@ def test_zip():
l(relay.TupleType([a, b])), [a, b])
assert mod[zip].checked_type == expected_type
l1 = cons(build_nat(1), cons(build_nat(2), cons(build_nat(3), nil())))
l1 = cons(make_nat_expr(1), cons(make_nat_expr(2), cons(make_nat_expr(3), nil())))
l2 = cons(nil(),
cons(cons(nil(), nil()),
cons(cons(nil(), cons(nil(), nil())),
@ -342,7 +342,7 @@ def test_zip():
assert len(to_list(zipped[2][1])) == 2
# test truncation
l3 = cons(build_nat(4), cons(build_nat(5), nil()))
l3 = cons(make_nat_expr(4), cons(make_nat_expr(5), nil()))
shorter_res = intrp.evaluate(zip(l3, l2))
truncated = to_list(shorter_res)
assert len(truncated) == 2
@ -363,9 +363,9 @@ def test_rev():
a = relay.TypeVar("a")
assert mod[rev].checked_type == relay.FuncType([l(a)], l(a), [a])
res = intrp.evaluate(rev(cons(build_nat(1),
cons(build_nat(2),
cons(build_nat(3), nil())))))
res = intrp.evaluate(rev(cons(make_nat_expr(1),
cons(make_nat_expr(2),
cons(make_nat_expr(3), nil())))))
reversed = to_list(res)
assert len(reversed) == 3
@ -392,7 +392,7 @@ def test_unfoldr():
relay.Clause(relay.PatternConstructor(z, []), none())
]))
res = intrp.evaluate(unfoldr(count_down, build_nat(3)))
res = intrp.evaluate(unfoldr(count_down, make_nat_expr(3)))
unfolded = to_list(res)
assert len(unfolded) == 3
@ -419,7 +419,7 @@ def test_unfoldl():
relay.Clause(relay.PatternConstructor(z, []), none())
]))
res = intrp.evaluate(unfoldl(count_down, build_nat(3)))
res = intrp.evaluate(unfoldl(count_down, make_nat_expr(3)))
unfolded = to_list(res)
assert len(unfolded) == 3
@ -444,7 +444,7 @@ def test_map_accumr():
relay.Tuple([add(x, acc),
add(x, acc)]))
vals = cons(build_nat(1), cons(build_nat(2), cons(build_nat(3), nil())))
vals = cons(make_nat_expr(1), cons(make_nat_expr(2), cons(make_nat_expr(3), nil())))
res = intrp.evaluate(map_accumr(add_acc_to_each, z(), vals))
sum = count(res[0])
@ -472,7 +472,7 @@ def test_map_accuml():
add_to_acc = relay.Function([acc, x],
relay.Tuple([add(x, acc), x]))
vals = cons(build_nat(1), cons(build_nat(2), cons(build_nat(3), nil())))
vals = cons(make_nat_expr(1), cons(make_nat_expr(2), cons(make_nat_expr(3), nil())))
res = intrp.evaluate(map_accuml(add_to_acc, z(), vals))
sum = count(res[0])
@ -497,8 +497,8 @@ def test_optional_matching():
]))
res = intrp.evaluate(foldr(condense, nil(), cons(
some(build_nat(3)),
cons(none(), cons(some(build_nat(1)), nil())))))
some(make_nat_expr(3)),
cons(none(), cons(some(make_nat_expr(1)), nil())))))
reduced = to_list(res)
assert len(reduced) == 2
@ -532,7 +532,7 @@ def test_tmap():
def test_size():
a = relay.TypeVar("a")
lhs = mod[size].checked_type
rhs = relay.FuncType([tree(a)], nat(), [a])
rhs = relay.FuncType([tree(a)], relay.scalar_type('int32'), [a])
assert lhs == rhs
root = rose(z(), cons(rose(z(), nil()),
@ -540,7 +540,7 @@ def test_size():
nil())))
t = rose(z(), cons(root, cons(root, cons(root, nil()))))
res = intrp.evaluate(size(t))
assert count(res) == 10
assert get_scalar(res) == 10
def test_wildcard_match_solo():
@ -601,10 +601,10 @@ def test_nested_matches():
inner_match)
]), l(a), [a])
first_list = cons(build_nat(1), cons(build_nat(2),
cons(build_nat(3), nil())))
second_list = cons(build_nat(4), cons(build_nat(5),
cons(build_nat(6), nil())))
first_list = cons(make_nat_expr(1), cons(make_nat_expr(2),
cons(make_nat_expr(3), nil())))
second_list = cons(make_nat_expr(4), cons(make_nat_expr(5),
cons(make_nat_expr(6), nil())))
final_list = cons(first_list, cons(second_list, nil()))
res = intrp.evaluate(flatten(final_list))
@ -660,6 +660,7 @@ def test_nested_pattern_match():
assert count(res) == 2
def test_compose():
n = relay.Var('n')
inc = relay.Function([n], s(n))
@ -667,11 +668,13 @@ def test_compose():
res = intrp.evaluate(relay.Call(compose(inc, double), [s(s(z()))]))
assert count(res) == 5
def test_iterate():
expr = relay.Call(iterate(double, build_nat(2)), [build_nat(3)])
expr = relay.Call(iterate(double, relay.const(2)), [make_nat_expr(3)])
res = intrp.evaluate(relay.Function([], expr)())
assert count(res) == 12
if __name__ == "__main__":
test_nat_constructor()
test_double()

Просмотреть файл

@ -53,10 +53,12 @@ def test_adt():
mod = relay.Module()
p = Prelude(mod)
x = relay.Var("x")
s_case = relay.Clause(relay.PatternConstructor(p.s, [relay.PatternVar(x)]), x)
some_case = relay.Clause(relay.PatternConstructor(p.some,
[relay.PatternVar(x)]),
x)
default_case = relay.Clause(relay.PatternVar(x), x)
m0 = relay.Match(p.z(), [default_case])
m1 = relay.Match(p.z(), [s_case, default_case])
m0 = relay.Match(p.none(), [default_case])
m1 = relay.Match(p.none(), [some_case, default_case])
assert well_formed(m0)
assert not well_formed(m1)

Просмотреть файл

@ -521,7 +521,7 @@ def test_match_alpha_equal():
relay.PatternVar(a)]),
p.cons(z, a))
data = p.cons(p.z(), p.cons(p.z(), p.nil()))
data = p.cons(relay.const(1), p.cons(relay.const(2), p.nil()))
match = relay.Match(data, [nil_case, cons_case])
equivalent = relay.Match(data, [nil_case, equivalent_cons])
@ -547,8 +547,8 @@ def test_match_alpha_equal():
relay.Clause(relay.PatternWildcard(), p.nil())
])
wrong_constructors = relay.Match(data, [
relay.Clause(relay.PatternConstructor(p.z), p.nil()),
relay.Clause(relay.PatternConstructor(p.s, [relay.PatternVar(x)]),
relay.Clause(relay.PatternConstructor(p.none), p.nil()),
relay.Clause(relay.PatternConstructor(p.some, [relay.PatternVar(x)]),
p.cons(x, p.nil()))
])

Просмотреть файл

@ -19,6 +19,7 @@ from tvm import relay
from tvm.relay.ir_pass import free_vars, free_type_vars, gradient
from tvm.relay import create_executor
from tvm.relay.prelude import Prelude
from tvm.relay.testing import add_nat_definitions, make_nat_expr
import numpy as np
@ -174,13 +175,14 @@ def test_tuple():
def test_pow():
mod = relay.Module()
p = Prelude(mod)
add_nat_definitions(p)
shape = (10, 10)
dtype = 'float32'
t = relay.TensorType(shape, dtype)
x = relay.var("x", t)
double = relay.Function([x], x + x)
i = relay.var("i", t)
func = relay.Function([i], relay.Call(p.iterate(double, p.s(p.s(p.s(p.z())))), [i]))
func = relay.Function([i], p.nat_iterate(double, make_nat_expr(p, 3))(i))
back_func = relay.ir_pass.infer_type(gradient(func, mod=mod), mod=mod)
assert back_func.checked_type == relay.FuncType([t], relay.TupleType([t, relay.TupleType([t])]))
i_nd = rand(dtype, *shape)

Просмотреть файл

@ -21,6 +21,7 @@ from tvm.relay.ir_pass import to_a_normal_form, alpha_equal, infer_type
from tvm.relay import op, create_executor
from tvm.relay.backend.interpreter import Value, TupleValue, ConstructorValue
from tvm.relay.prelude import Prelude
from tvm.relay.testing import add_nat_definitions, count
def check_eval(expr, expected_result, mod=None, rtol=1e-07):
@ -130,19 +131,10 @@ def test_ref():
check_eval(to_a_normal_form(body), 3)
# this is an example of using the adt value in python side
def count(n):
assert isinstance(n, ConstructorValue)
if n.constructor.name_hint == 's':
return 1 + count(n.fields[0])
else:
assert n.constructor.name_hint == 'z'
return 0
def test_add():
def test_nat_add():
mod = relay.Module()
p = Prelude(mod)
add_nat_definitions(p)
nat = p.nat
add = p.add
s = p.s
@ -183,4 +175,5 @@ if __name__ == '__main__':
test_ref()
test_add()
test_let()
test_nat_add()
test_function()