[TOPI] Improve conv2d for resnet18 workload (#427)
* relu activation migrated to topi * reviews addressed * relu compute deleted * conv2d_nchw updated * resnet18 hand tuned schedule added * pylint error fixed * one more workload test for conv2d_nchw * conv2d schedule subfunctions added for different patterns * reviews addressed
This commit is contained in:
Родитель
5ea4072c5a
Коммит
ab17bf6569
|
@ -1,8 +1,222 @@
|
|||
# pylint: disable=invalid-name, no-member, too-many-locals, too-many-statements
|
||||
#pylint: disable=invalid-name, no-member, too-many-locals, too-many-statements, too-many-arguments
|
||||
"""Schedule for conv2d_nchw with auto fusion"""
|
||||
import tvm
|
||||
from .. import util
|
||||
|
||||
def conv2d_224_3_64(s, temp_S, Filter_S, Out, Out_L):
|
||||
"""Schedule conv2d for specific feature_in_out_filter pattern"""
|
||||
# sheduler params
|
||||
ofactor = 16
|
||||
hfactor = 2
|
||||
ow_size = util.get_const_int(Out.shape[3])
|
||||
num_thread = ow_size*hfactor
|
||||
vthread = hfactor
|
||||
block_x = tvm.thread_axis("blockIdx.x")
|
||||
thread_x = tvm.thread_axis((0, num_thread), "threadIdx.x")
|
||||
thread_xz = tvm.thread_axis((0, vthread), "vthread", name="vx")
|
||||
|
||||
i, oc, h, w = s[Out].op.axis
|
||||
ooc, ioc = s[Out].split(oc, factor=ofactor)
|
||||
oh, ih = s[Out].split(h, factor=hfactor)
|
||||
s[Out].reorder(ooc, oh, ioc, ih, w)
|
||||
oc = s[Out].fuse(ooc, oh)
|
||||
w = s[Out].fuse(w, ih)
|
||||
|
||||
s[Out].bind(w, thread_x)
|
||||
s[Out].bind(ioc, thread_xz)
|
||||
s[Out].bind(oc, block_x)
|
||||
|
||||
s[Out_L].compute_at(s[Out], w)
|
||||
|
||||
# schedule Out_L local write
|
||||
i, oc, h, w = s[Out_L].op.axis
|
||||
ic, dh, dw = s[Out_L].op.reduce_axis
|
||||
s[Out_L].reorder(i, oc, h, w, ic, dh, dw)
|
||||
s[temp_S].compute_at(s[Out_L], ic)
|
||||
s[Filter_S].compute_at(s[Out_L], w)
|
||||
|
||||
#schedule temp_S shared mem load
|
||||
i, ic, h, w = s[temp_S].op.axis
|
||||
tx, ih = s[temp_S].split(w, nparts=num_thread)
|
||||
s[temp_S].bind(tx, thread_x)
|
||||
|
||||
#schedule Filter_S shared mem load
|
||||
i, oc, h, w = s[Filter_S].op.axis
|
||||
fuse_index = s[Filter_S].fuse(w, h)
|
||||
w = s[Filter_S].fuse(fuse_index, oc)
|
||||
tx, _ = s[Filter_S].split(w, nparts=num_thread)
|
||||
s[Filter_S].bind(tx, thread_x)
|
||||
|
||||
def conv2d_56_64_128(s, temp_S, Filter_S, Out, Out_L, flag):
|
||||
"""Schedule conv2d for specific feature_in_out_filter pattern"""
|
||||
# sheduler params
|
||||
num_thread = 8
|
||||
vthread = 2
|
||||
opart2 = 4
|
||||
ofactor = 64
|
||||
wfactor = 28
|
||||
ifactor = 8
|
||||
if flag > 256:
|
||||
wfactor = 14
|
||||
sfactor = max(1, ofactor//(opart2*2))
|
||||
spart = max(1, (wfactor + vthread-1) // vthread)
|
||||
block_x = tvm.thread_axis("blockIdx.x")
|
||||
block_y = tvm.thread_axis("blockIdx.y")
|
||||
block_z = tvm.thread_axis("blockIdx.z")
|
||||
thread_x = tvm.thread_axis((0, num_thread), "threadIdx.x")
|
||||
thread_y = tvm.thread_axis((0, num_thread), "threadIdx.y")
|
||||
thread_xz = tvm.thread_axis((0, vthread), "vthread", name="vx")
|
||||
thread_yz = tvm.thread_axis((0, vthread), "vthread", name="vy")
|
||||
|
||||
i, oc, h, w = s[Out].op.axis
|
||||
ooc, ioc = s[Out].split(oc, factor=ofactor)
|
||||
ow, iw = s[Out].split(w, factor=wfactor)
|
||||
ow = s[Out].fuse(ow, h)
|
||||
oioc, iioc = s[Out].split(ioc, nparts=vthread)
|
||||
oiw, iiw = s[Out].split(iw, nparts=vthread)
|
||||
oiioc, iiioc = s[Out].split(iioc, nparts=opart2)
|
||||
s[Out].reorder(i, ooc, ow, oioc, oiw, oiioc, iiw, iiioc)
|
||||
s[Out].bind(iiioc, thread_x)
|
||||
s[Out].bind(iiw, thread_y)
|
||||
s[Out].bind(oiioc, thread_xz)
|
||||
s[Out].bind(oiw, thread_yz)
|
||||
s[Out].bind(oioc, block_x)
|
||||
s[Out].bind(ow, block_y)
|
||||
s[Out].bind(ooc, block_z)
|
||||
|
||||
s[Out_L].compute_at(s[Out], iiioc)
|
||||
|
||||
# schedule Out_L local write
|
||||
i, oc, h, w = s[Out_L].op.axis
|
||||
ic, dh, dw = s[Out_L].op.reduce_axis
|
||||
oic, iic = s[Out_L].split(ic, factor=ifactor)
|
||||
s[Out_L].reorder(oic, dh, dw, iic, h, w)
|
||||
s[Out_L].fuse(iic, dw)
|
||||
dh = s[Out_L].fuse(dh, oic)
|
||||
|
||||
s[temp_S].compute_at(s[Out_L], dh)
|
||||
s[Filter_S].compute_at(s[Out_L], dh)
|
||||
|
||||
#schedule temp_S shared mem load
|
||||
i, ic, h, w = s[temp_S].op.axis
|
||||
_, iic = s[temp_S].split(ic, factor=sfactor)
|
||||
_, iw = s[temp_S].split(w, factor=spart)
|
||||
s[temp_S].bind(iic, thread_x)
|
||||
s[temp_S].bind(iw, thread_y)
|
||||
|
||||
#schedule Filter_S shared mem load
|
||||
i, oc, h, w = s[Filter_S].op.axis
|
||||
_, ioc = s[Filter_S].split(oc, factor=sfactor)
|
||||
_, ii = s[Filter_S].split(i, factor=spart)
|
||||
s[Filter_S].bind(ioc, thread_x)
|
||||
s[Filter_S].bind(ii, thread_y)
|
||||
|
||||
def conv2d_14_256_256(s, temp_S, Filter_S, Out, Out_L):
|
||||
"""Schedule conv2d for specific feature_in_out_filter pattern"""
|
||||
# sheduler params
|
||||
vthread_x = util.get_const_int(Out.shape[3])
|
||||
num_thread_x = 64
|
||||
block_x = tvm.thread_axis("blockIdx.x")
|
||||
thread_x = tvm.thread_axis((0, num_thread_x), "threadIdx.x")
|
||||
thread_xz = tvm.thread_axis((0, vthread_x), "vthread", name="vx")
|
||||
|
||||
i, oc, h, w = s[Out].op.axis
|
||||
ooc, ioc = s[Out].split(oc, factor=num_thread_x)
|
||||
s[Out].reorder(i, ooc, h, w, ioc)
|
||||
ooc = s[Out].fuse(h, ooc)
|
||||
s[Out].bind(ioc, thread_x)
|
||||
s[Out].bind(w, thread_xz)
|
||||
s[Out].bind(ooc, block_x)
|
||||
|
||||
s[Out_L].compute_at(s[Out], ioc)
|
||||
|
||||
# schedule Out_L local write
|
||||
i, oc, h, w = s[Out_L].op.axis
|
||||
ic, dh, dw = s[Out_L].op.reduce_axis
|
||||
oic, iic = s[Out_L].split(ic, factor=8)
|
||||
s[Out_L].reorder(oic, dh, dw, iic, h, w)
|
||||
|
||||
s[temp_S].compute_at(s[Out_L], oic)
|
||||
s[Filter_S].compute_at(s[Out_L], oic)
|
||||
|
||||
#schedule temp_S shared mem load
|
||||
i, ic, h, w = s[temp_S].op.axis
|
||||
s[temp_S].reorder(i, ic, w, h)
|
||||
ic = s[temp_S].fuse(w, ic)
|
||||
_, iic = s[temp_S].split(ic, factor=num_thread_x)
|
||||
s[temp_S].bind(iic, thread_x)
|
||||
|
||||
#schedule Filter_S shared mem load
|
||||
i, oc, h, w = s[Filter_S].op.axis
|
||||
_, ii = s[Filter_S].split(i, factor=num_thread_x)
|
||||
s[Filter_S].bind(ii, thread_x)
|
||||
|
||||
def conv2d_56_64_64(s, Filter, temp_S, Filter_S, Out, Out_L):
|
||||
"""Schedule conv2d for specific feature_in_out_filter pattern"""
|
||||
# sheduler params
|
||||
num_thread = 8
|
||||
vthread = 2
|
||||
opart2 = 4
|
||||
ofactor = 64
|
||||
wfactor = 56
|
||||
ifactor = 8
|
||||
if util.get_const_int(Filter.shape[0]) == 64:
|
||||
opart2 = 8
|
||||
ifactor = 16
|
||||
sfactor = max(1, ofactor//(opart2*2))
|
||||
spart = max(1, (wfactor + vthread-1) // vthread)
|
||||
|
||||
block_x = tvm.thread_axis("blockIdx.x")
|
||||
block_y = tvm.thread_axis("blockIdx.y")
|
||||
block_z = tvm.thread_axis("blockIdx.z")
|
||||
thread_x = tvm.thread_axis((0, num_thread), "threadIdx.x")
|
||||
thread_y = tvm.thread_axis((0, num_thread), "threadIdx.y")
|
||||
thread_xz = tvm.thread_axis((0, vthread), "vthread", name="vx")
|
||||
thread_yz = tvm.thread_axis((0, vthread), "vthread", name="vy")
|
||||
|
||||
i, oc, h, w = s[Out].op.axis
|
||||
ooc, ioc = s[Out].split(oc, factor=ofactor)
|
||||
ow, iw = s[Out].split(w, factor=wfactor)
|
||||
ow = s[Out].fuse(ow, h)
|
||||
oioc, iioc = s[Out].split(ioc, nparts=vthread)
|
||||
oiw, iiw = s[Out].split(iw, nparts=vthread)
|
||||
oiioc, iiioc = s[Out].split(iioc, nparts=opart2)
|
||||
s[Out].reorder(i, ooc, ow, oioc, oiw, oiioc, iiw, iiioc)
|
||||
s[Out].bind(iiioc, thread_x)
|
||||
s[Out].bind(iiw, thread_y)
|
||||
s[Out].bind(oiioc, thread_xz)
|
||||
s[Out].bind(oiw, thread_yz)
|
||||
s[Out].bind(oioc, block_x)
|
||||
s[Out].bind(ow, block_y)
|
||||
s[Out].bind(ooc, block_z)
|
||||
|
||||
s[Out_L].compute_at(s[Out], iiioc)
|
||||
|
||||
# schedule Out_L local write
|
||||
i, oc, h, w = s[Out_L].op.axis
|
||||
ic, dh, dw = s[Out_L].op.reduce_axis
|
||||
oic, iic = s[Out_L].split(ic, factor=ifactor)
|
||||
s[Out_L].reorder(oic, dh, dw, iic, h, w)
|
||||
|
||||
fuse_index = s[Out_L].fuse(dw, dh)
|
||||
fuse_index = s[Out_L].fuse(fuse_index, oic)
|
||||
dw = fuse_index
|
||||
s[temp_S].compute_at(s[Out_L], dw)
|
||||
s[Filter_S].compute_at(s[Out_L], dw)
|
||||
|
||||
#schedule temp_S shared mem load
|
||||
i, ic, h, w = s[temp_S].op.axis
|
||||
_, iic = s[temp_S].split(ic, factor=sfactor)
|
||||
_, iw = s[temp_S].split(w, factor=spart)
|
||||
s[temp_S].bind(iic, thread_x)
|
||||
s[temp_S].bind(iw, thread_y)
|
||||
|
||||
#schedule Filter_S shared mem load
|
||||
i, oc, h, w = s[Filter_S].op.axis
|
||||
_, ioc = s[Filter_S].split(oc, factor=sfactor)
|
||||
_, ii = s[Filter_S].split(i, factor=spart)
|
||||
s[Filter_S].bind(ioc, thread_x)
|
||||
s[Filter_S].bind(ii, thread_y)
|
||||
|
||||
def schedule_conv2d_small_batch(outs):
|
||||
"""Create schedule for tensors or return error if batch size is larager than 1"""
|
||||
|
@ -34,66 +248,16 @@ def schedule_conv2d_small_batch(outs):
|
|||
s[Output].set_scope("local")
|
||||
Out_L = Output
|
||||
|
||||
# sheduler params
|
||||
num_thread = 8
|
||||
vthread = 2
|
||||
opart2 = 4
|
||||
ofactor = 64
|
||||
wfactor = 56
|
||||
ifactor = 8
|
||||
sfactor = max(1, ofactor//(opart2*2))
|
||||
spart = max(1, (wfactor + vthread-1) // vthread)
|
||||
block_x = tvm.thread_axis("blockIdx.x")
|
||||
block_y = tvm.thread_axis("blockIdx.y")
|
||||
block_z = tvm.thread_axis("blockIdx.z")
|
||||
thread_x = tvm.thread_axis((0, num_thread), "threadIdx.x")
|
||||
thread_y = tvm.thread_axis((0, num_thread), "threadIdx.y")
|
||||
thread_xz = tvm.thread_axis((0, vthread), "vthread", name="vx")
|
||||
thread_yz = tvm.thread_axis((0, vthread), "vthread", name="vy")
|
||||
flag = util.get_const_int(Filter.shape[0])+util.get_const_int(Filter.shape[1])
|
||||
|
||||
i, oc, h, w = s[Out].op.axis
|
||||
ooc, ioc = s[Out].split(oc, factor=ofactor)
|
||||
ow, iw = s[Out].split(w, factor=wfactor)
|
||||
ow = s[Out].fuse(ow, h)
|
||||
oioc, iioc = s[Out].split(ioc, nparts=vthread)
|
||||
oiw, iiw = s[Out].split(iw, nparts=vthread)
|
||||
oiioc, iiioc = s[Out].split(iioc, nparts=opart2)
|
||||
s[Out].reorder(i, ooc, ow, oioc, oiw, oiioc, iiw, iiioc)
|
||||
s[Out].bind(iiioc, thread_x)
|
||||
s[Out].bind(iiw, thread_y)
|
||||
s[Out].bind(oiioc, thread_xz)
|
||||
s[Out].bind(oiw, thread_yz)
|
||||
s[Out].bind(oioc, block_x)
|
||||
s[Out].bind(ow, block_y)
|
||||
s[Out].bind(ooc, block_z)
|
||||
|
||||
s[Out_L].compute_at(s[Out], iiioc)
|
||||
|
||||
# schedule Out_L local write
|
||||
i, oc, h, w = s[Out_L].op.axis
|
||||
ic, dh, dw = s[Out_L].op.reduce_axis
|
||||
oic, iic = s[Out_L].split(ic, factor=ifactor)
|
||||
s[Out_L].reorder(oic, dh, dw, iic, h, w)
|
||||
fuse_index = s[Out_L].fuse(dw, dh)
|
||||
fuse_index = s[Out_L].fuse(fuse_index, oic)
|
||||
dw = fuse_index
|
||||
|
||||
s[temp_S].compute_at(s[Out_L], dw)
|
||||
s[Filter_S].compute_at(s[Out_L], dw)
|
||||
|
||||
#schedule temp_S shared mem load
|
||||
i, ic, h, w = s[temp_S].op.axis
|
||||
_, iic = s[temp_S].split(ic, factor=sfactor)
|
||||
_, iw = s[temp_S].split(w, factor=spart)
|
||||
s[temp_S].bind(iic, thread_x)
|
||||
s[temp_S].bind(iw, thread_y)
|
||||
|
||||
#schedule Filter_S shared mem load
|
||||
i, oc, h, w = s[Filter_S].op.axis
|
||||
_, ioc = s[Filter_S].split(oc, factor=sfactor)
|
||||
_, ii = s[Filter_S].split(i, factor=spart)
|
||||
s[Filter_S].bind(ioc, thread_x)
|
||||
s[Filter_S].bind(ii, thread_y)
|
||||
if util.get_const_int(Filter.shape[3]) == 7:
|
||||
conv2d_224_3_64(s, temp_S, Filter_S, Out, Out_L)
|
||||
elif 128 < flag < 512:
|
||||
conv2d_56_64_128(s, temp_S, Filter_S, Out, Out_L, flag)
|
||||
elif flag >= 512:
|
||||
conv2d_14_256_256(s, temp_S, Filter_S, Out, Out_L)
|
||||
else:
|
||||
conv2d_56_64_64(s, Filter, temp_S, Filter_S, Out, Out_L)
|
||||
|
||||
def traverse(OP):
|
||||
"""Traverse operators from computation graph"""
|
||||
|
|
|
@ -22,7 +22,6 @@ def schedule_elemwise(outs):
|
|||
tvm.schedule.AutoInlineInjective(s)
|
||||
|
||||
x = outs[0]
|
||||
num_dim = len(x.shape)
|
||||
fused = s[x].fuse(*x.op.axis)
|
||||
num_thread = 64
|
||||
bx, tx = s[x].split(fused, factor=num_thread)
|
||||
|
|
|
@ -55,6 +55,7 @@ def verify_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, stride, p
|
|||
|
||||
|
||||
def test_conv2d_nchw():
|
||||
verify_conv2d_nchw(1, 3, 224, 64, 7, 3, 2)
|
||||
verify_conv2d_nchw(1, 64, 56, 64, 3, 1, 1)
|
||||
verify_conv2d_nchw(1, 64, 56, 64, 1, 1, 0)
|
||||
verify_conv2d_nchw(1, 64, 56, 128, 3, 2, 1)
|
||||
|
|
Загрузка…
Ссылка в новой задаче