[Relay][Frontend] Caffe2 Support (#2507)

* [Relay][Frontend] Add Caffe2 Support

* [Relay][Frontend] Add Caffe2 Support (fix unsed import)

* [Relay][Frontend] Add Caffe2 Support (fix caffe2 model import)

* [Relay][Frontend] Add Caffe2 Support (fix model install and reflect code reviews)

* [Relay][Frontend] Add Caffe2 Support (fix caffe2 model import)

* [Relay][Frontend] Add Caffe2 Support (fix caffe2 model import)

* [Relay][Frontend] Add Caffe2 Support (fix caffe2 model import)

* [Relay][Frontend] Add Caffe2 Support (fix caffe2 frontend import)

* [Relay][Frontend] Add Caffe2 Support (rename function name in test_forward)

* [Relay][Frontend] Add Caffe2 Support (fix caffe2 model import)

* [Relay][Frontend] Add Caffe2 Support (fix caffe2 model import)

* [Doc] Caffe2 frontend tutorial

* [Doc] Caffe2 frontend tutorial

* [Doc] Caffe2 frontend tutorial

* [Relay][Frontend] Add Caffe2 Support (remove unsed file)
This commit is contained in:
Hiroyuki Makino 2019-02-02 15:31:20 +09:00 коммит произвёл Yizhi Liu
Родитель e012f819b1
Коммит b3b3d28a18
10 изменённых файлов: 975 добавлений и 0 удалений

Просмотреть файл

@ -67,6 +67,9 @@ RUN bash /install/ubuntu_install_onnx.sh
COPY install/ubuntu_install_tflite.sh /install/ubuntu_install_tflite.sh
RUN bash /install/ubuntu_install_tflite.sh
COPY install/ubuntu_install_caffe2.sh /install/ubuntu_install_caffe2.sh
RUN bash /install/ubuntu_install_caffe2.sh
RUN pip3 install Pillow
COPY install/ubuntu_install_vulkan.sh /install/ubuntu_install_vulkan.sh

Просмотреть файл

@ -0,0 +1,3 @@
python3 -m caffe2.python.models.download -i -f squeezenet
python3 -m caffe2.python.models.download -i -f resnet50
python3 -m caffe2.python.models.download -i -f vgg19

Просмотреть файл

@ -12,3 +12,4 @@ from .keras import from_keras
from .onnx import from_onnx
from .tflite import from_tflite
from .coreml import from_coreml
from .caffe2 import from_caffe2

Просмотреть файл

@ -0,0 +1,565 @@
# pylint: disable=import-self, invalid-name, line-too-long, unused-argument
"""Caffe2 frontend"""
from __future__ import absolute_import as _abs
from .. import ir_pass
from .. import expr as _expr
from .. import op as _op
from ... import nd as _nd
from .common import AttrCvt, Renamer
from .common import get_relay_op, new_var, infer_channels
__all__ = ['from_caffe2']
def dimension_picker(prefix, surfix=''):
def _impl(attr):
kernel = attr['kernel_shape']
if len(kernel) == 2:
return prefix + '2d' + surfix
else:
raise NotImplementedError("Only 2d kernel supported.")
return _impl
def revert_caffe2_pad(pads):
"""Caffe2 requires two times the normal padding."""
if len(pads) == 4:
pads = pads[:2]
elif len(pads) == 2:
pass
else:
raise ValueError("Invalid caffe2 type padding: {}".format(pads))
return pads
def dimension_constraint():
def _dim_check(args):
if len(args['kernel_shape']) == 2:
return True
return False
return _dim_check, "Only 2d kernel supported."
def _clean_up_pool_args(args):
""" A helper function to clean up common arguments in conv and pooling ops.
"""
assert isinstance(args, dict)
if 'stride_h' in args and 'stride_w' in args:
assert 'stride' not in args and 'strides' not in args
args['strides'] = [args['stride_h'], args['stride_w']]
args.pop('stride_h')
args.pop('stride_w')
elif 'stride' in args:
args['strides'] = [args['stride'], args['stride']]
args.pop('stride')
# rename 'kernel', 'kernels', to 'kernel_shape'
if 'kernel_h' in args and 'kernel_w' in args:
assert 'kernel' not in args and 'kernels' not in args
args['kernel_shape'] = [args['kernel_h'], args['kernel_w']]
args.pop('kernel_h')
args.pop('kernel_w')
elif 'kernel' in args:
args['kernel_shape'] = [args['kernel'], args['kernel']]
args.pop('kernel')
elif 'kernels' in args:
args['kernel_shape'] = args['kernels']
args.pop('kernels')
if 'pad_t' in args and 'pad_l' in args and 'pad_b' in args and 'pad_r' in args:
assert 'pad' not in args and 'pads' not in args
args['pads'] = [
args['pad_t'], args['pad_l'], args['pad_b'], args['pad_r']
]
for pad in ['pad_t', 'pad_l', 'pad_b', 'pad_r']:
args.pop(pad)
elif 'pad' in args:
args['pads'] = [args['pad'], args['pad']]
args.pop('pad')
if 'dilation_h' in args and 'dilation_w' in args:
assert 'dilation' not in args and 'dilations' not in args
args['dilations'] = [args['dilation_h'], args['dilation_w']]
args.pop('dilation_h')
args.pop('dilation_w')
elif 'dilation' in args:
args['dilations'] = [args['dilation'], args['dilation']]
args.pop('dilation')
return args
class Caffe2OpConverter(object):
""" A helper class for holding Caffe2 op converters.
"""
@classmethod
def get_converter(cls):
""" Get converter.
:return: converter, which should be `_impl`.
"""
if hasattr(cls, '_impl'):
return getattr(cls, '_impl')
else:
raise NotImplementedError('{} not implemented'.format(
cls.__name__))
_caffe2_internal_args = [
# nnpack args
'algo',
'convolution_transform_strategy',
'float16_compute',
'shared_buffer',
# training args
'init_params',
'cudnn_exhaustive_search',
'exhaustive_search',
# training args
'adj',
'hwgq',
# args that we don't care
'legacy_pad',
]
class Elemwise(Caffe2OpConverter):
""" A helper class for elemwise op converters.
"""
name = ''
@classmethod
def _math_name_picker(cls, suffix):
def _impl(attr):
if attr.get('broadcast', 0):
return 'broadcast_' + suffix
return 'elemwise_' + suffix
return _impl
@classmethod
def _impl(cls, inputs, args, params):
assert len(inputs) == 2, "Math op take 2 inputs, {} given".format(
len(inputs))
op_name = cls._math_name_picker(cls.name)(args)
axis = int(args.get('axis', 0))
conv_ops = ["conv2d", "conv2d_transpose"]
if op_name == 'broadcast_add' and inputs[0].attr('op_name') in conv_ops:
# TODO(zhreshold): remove hard coded infershape
inputs[1] = _op.expand_dims(inputs[1], axis=axis, num_newaxis=2)
return get_relay_op(op_name)(*inputs)
class Add(Elemwise):
""" Operator converter for Add.
"""
name = 'add'
class Pool(Caffe2OpConverter):
""" A helper class for pool op converters.
"""
name = ''
@classmethod
def _impl(cls, inputs, args, params):
_clean_up_pool_args(args)
if 'global_pooling' in args and args['global_pooling'] == 1:
op_name = dimension_picker('global_' + cls.name)
return get_relay_op(op_name(args))(*inputs)
return AttrCvt(
op_name=dimension_picker(cls.name),
transforms={
'kernel_shape': 'pool_size',
'pads': ('padding', (0, 0), revert_caffe2_pad),
'strides': 'strides',
},
ignores=['dilations', 'order', 'legacy_pad', 'global_pooling'],
extras={'ceil_mode': False},
custom_check=dimension_constraint())(inputs, args, params)
class AveragePool(Pool):
name = 'avg_pool'
class MaxPool(Pool):
name = 'max_pool'
class Conv(Caffe2OpConverter):
""" Operator converter for Conv.
"""
@classmethod
def _impl(cls, inputs, args, params):
# get number of channels
channels = infer_channels(inputs[1])
args['channels'] = channels
_clean_up_pool_args(args)
out = AttrCvt(
op_name=dimension_picker('conv'),
transforms={
'group': ('groups', 1),
'kernel_shape': 'kernel_size',
'pads': ('padding', (0, 0), revert_caffe2_pad),
'strides': 'strides',
'dilations': ('dilation', (1, 1)),
'order': ('data_layout', ("NCHW"), lambda x: x if isinstance(x, str) else x.decode('UTF-8')),
},
excludes=[],
ignores=[],
custom_check=dimension_constraint())(inputs[:2], args, params)
use_bias = len(inputs) == 3
if use_bias:
out = _op.nn.bias_add(out, inputs[2])
return out
class Concat(Caffe2OpConverter):
""" Operator converter for Concat.
"""
@classmethod
def _impl(cls, inputs, args, params):
def _get_axis_from_order_str(order):
order = order if isinstance(order, str) else order.decode('UTF-8')
if order == 'NCHW':
return 1
elif order == 'NHWC':
return 3
else:
raise RuntimeError(
"Unsupported storage order: {} in caffe2".format(order))
return AttrCvt(
op_name='concatenate',
transforms={
'order': ('axis', (1), _get_axis_from_order_str),
},
excludes=['add_axis'])((inputs,), args, params)
class NormalizePlanarYUV(Caffe2OpConverter):
""" Operator converter for NormalizePlanarYUV.
caffe2 definition: https://github.com/pytorch/pytorch/blob/master/caffe2/operators/norm_planar_yuv_op.cc
"""
@classmethod
def _impl(cls, inputs, args, params):
assert len(inputs) == 3
mean = _op.expand_dims(inputs[1], axis=2, num_newaxis=2)
std = _op.expand_dims(inputs[2], axis=2, num_newaxis=2)
return _op.broadcast_divide(_op.subtract(inputs[0], mean), std)
class ResizeNearest(Caffe2OpConverter):
""" Operator converter for Upsample (nearest mode).
"""
@classmethod
def _impl(cls, inputs, args, params):
width_scale = args['width_scale'] if 'width_scale' in args else 1
height_scale = args['height_scale'] if 'height_scale' in args else 1
assert width_scale == height_scale
return _op.nn.upsampling(
inputs[0], scale=int(width_scale), method="NEAREST_NEIGHBOR")
class Sum(Caffe2OpConverter):
""" Operator converter for Sum.
"""
@classmethod
def _impl(cls, inputs, args, params):
# Sum Operator
for in_index in range(len(inputs) - 1):
inputs[in_index + 1] = _op.add(inputs[in_index], inputs[in_index + 1])
return inputs[len(inputs) - 1]
class Softmax(Caffe2OpConverter):
""" Operator converter for Softmax.
"""
@classmethod
def _impl(cls, inputs, args, params):
# set default value when axis is not set in the model
if 'axis' not in args:
args['axis'] = 1
return AttrCvt('softmax', transforms={'axis': ('axis', args['axis'])})(inputs, args, params)
class FC(Caffe2OpConverter):
""" Operator converter for FC.
"""
@classmethod
def _impl(cls, inputs, args, params):
inputs[0] = _op.nn.batch_flatten(inputs[0])
units = infer_channels(inputs[1])
res = _op.nn.dense(inputs[0], inputs[1], units=units)
use_bias = len(inputs) == 3
if use_bias:
res = _op.nn.bias_add(res, inputs[2])
return res
class SpatialBN(Caffe2OpConverter):
""" Operator converter for SpatialBN.
"""
@classmethod
def _impl(cls, inputs, args, params):
return AttrCvt(
op_name='batch_norm',
disables=['momentum'],
ignores=[
'order', 'spatial', 'is_test', 'consumed_inputs', 'num_batches'
])(inputs, args, params)
# compatible operators that do NOT require any conversion.
_identity_list = []
# _convert_map defines maps of name to converter functor(callable)
# for 1 to 1 mapping, use Renamer if nothing but name is different
# use AttrCvt if attributes need to be converted
# for 1 to N mapping(composed), use custom callable functions
# for N to 1 mapping, currently not supported(?)
# Minimal set of ops for squeezenet and resnet50
def _get_convert_map():
return {
# caffe2 common operators
'Add': Add.get_converter(),
'Sum': Sum.get_converter(),
'Softmax': Softmax.get_converter(),
# nn
'AveragePool': AveragePool.get_converter(),
'MaxPool': MaxPool.get_converter(),
'Conv': Conv.get_converter(),
'Concat': Concat.get_converter(),
'FC': FC.get_converter(),
'SpatialBN': SpatialBN.get_converter(),
'ResizeNearest': ResizeNearest.get_converter(),
'Relu': AttrCvt('relu', {}, ignores=['order']),
'Sigmoid': Renamer('sigmoid'),
'Dropout': AttrCvt('dropout', {'ratio': 'rate'}, ignores=['is_test']),
# c2 image preprocessing ops
'NormalizePlanarYUV': NormalizePlanarYUV.get_converter(),
}
class Caffe2NetDef(object):
"""A helper class for handling Relay expression copying from pb2.GraphProto.
Definition: https://github.com/pytorch/pytorch/blob/master/caffe2/proto/caffe2.proto
"""
def __init__(self, shape, dtype):
self._nodes = {}
self._params = {}
self._visited_nodes = set()
self._ops = {}
self._shape = shape
self._dtype = dtype
def from_caffe2(self, init_net, predict_net):
"""Construct Relay expression from caffe2 graph.
Parameters
----------
init_net : protobuf object
predict_net : protobuf object
Returns
-------
func : tvm.relay.expr.Function
Compatible relay function
params : dict
A dict of name: tvm.nd.array pairs, used as pretrained weights
"""
from caffe2.python import workspace
workspace.RunNetOnce(init_net)
# Input
input_name = predict_net.op[0].input[0]
# Params
self._params = {}
used_blobs = set()
for c2_op in predict_net.op:
for i in c2_op.input:
used_blobs.add(i)
for blob in workspace.Blobs():
if blob in used_blobs and blob != input_name:
self._params[blob] = _nd.array(workspace.FetchBlob(blob))
# Variables
self._nodes = {}
for blob in predict_net.external_input:
if blob in self._params:
self._nodes[blob] = new_var(blob, shape=self._params[blob].shape, dtype=self._params[blob].dtype)
else:
shape = self._shape[blob] if blob in self._shape else ()
if isinstance(self._dtype, dict) and blob in self._dtype:
dtype = str(self._dtype[blob])
elif isinstance(self._dtype, str):
dtype = self._dtype
else:
dtype = "float32"
self._nodes[blob] = new_var(blob, shape=shape, dtype=dtype)
# Ops
for c2_op in predict_net.op:
for blob in c2_op.output:
self._ops[blob] = c2_op
for c2_op in predict_net.op:
self._process_op(c2_op)
# Outputs
out = []
for blob in predict_net.external_output:
out.append(self._nodes[blob])
if len(out) > 1:
outputs = _expr.Tuple(out)
else:
outputs = out[0]
func = _expr.Function(ir_pass.free_vars(outputs), outputs)
return func, self._params
def _get_node(self, blob):
"""Get the Symbol of blob and detect cyclic dependency in the graph."""
if blob in self._nodes:
return self._nodes[blob]
assert blob not in self._visited_nodes, 'Cyclic dependency in the graph (in {})'.format(
blob)
self._visited_nodes.add(blob)
self._process_op(self._ops[blob])
return self._nodes[blob]
def _process_op(self, c2_op):
op_type = c2_op.type
args = self._parse_arg(c2_op.arg)
inputs = [self._get_node(i) for i in c2_op.input]
tvm_op = self._convert_operator(op_type, inputs, args)
if not isinstance(tvm_op, _expr.TupleWrapper):
self._nodes[c2_op.output[0]] = tvm_op
else:
for k, i in zip(list(c2_op.output), range(len(tvm_op))):
self._nodes[k] = tvm_op[i]
def _parse_arg(self, arg):
"""Convert a list of Argument to a dict, with names as keys."""
args = {}
for a in arg:
for f in ['f', 'i', 's']:
if a.HasField(f):
args[a.name] = getattr(a, f)
for f in ['floats', 'ints', 'strings']:
if list(getattr(a, f)):
assert a.name not in args, "Only one type of attr is allowed"
args[a.name] = tuple(getattr(a, f))
for f in ['n']:
if a.HasField(f):
raise NotImplementedError(
"Field {} is not supported in relay.".format(f))
for f in ['nets']:
if list(getattr(a, f)):
raise NotImplementedError(
"Field {} is not supported in relay.".format(f))
if a.name not in args:
raise ValueError("Cannot parse attribute: \n{}\n.".format(a))
return args
def _convert_operator(self,
op_type,
inputs,
args,
identity_list=None,
convert_map=None):
"""Convert from Caffe2 operator to Relay operator.
The converter must specify conversions explicity for incompatible name, and
apply handlers to operator attributes.
Parameters
----------
op_type : str
Operator name, such as Convolution, FullyConnected
inputs : list of tvm.relay.expr.Function
List of input inputs.
args : dict
Dict of operator attributes
identity_list : list
List of operators that don't require conversion
convert_map : dict
Dict of name : callable, where name is the op's name that
require conversion to relay, callable are functions which
take args and return (new_op_type, new_args)
Returns
-------
func : tvm.relay.expr.Function
Converted relay function
"""
identity_list = identity_list if identity_list else _identity_list
convert_map = convert_map if convert_map else _get_convert_map()
if op_type in identity_list:
func = get_relay_op(op_type)(*inputs, **args)
elif op_type in convert_map:
# Add a sanitizing step to convert all byte strings in args to strings
func = convert_map[op_type](inputs, args, self._params)
else:
raise NotImplementedError(
"Operator {} not implemented.".format(op_type))
return func
def from_caffe2(init_net, predict_net, shape=None, dtype="float32"):
"""Load caffe2 graph which contains init_net and predict_net into Relay Function.
Parameters
----------
init_net : protobuf object
Caffe2 NetDef containing the weights
predict_net : protobuf object
Caffe2 NetDef containing the graph
shape : dict of str to tuple
The input shape to the graph
dtype : str or dict of str to str
The input types to the graph
Returns
-------
sym : tvm.relay.expr.Function
Compatible relay function
params : dict of str to tvm.ndarray
Dict of converted parameters stored in tvm.ndarray format
"""
caffe2 = Caffe2NetDef(shape, dtype)
return caffe2.from_caffe2(init_net, predict_net)

Просмотреть файл

@ -0,0 +1,29 @@
"""Store for caffe2 examples and common models."""
from __future__ import absolute_import as _abs
import os
import sys
import importlib
from . import squeezenet
from caffe2.python.models.download import ModelDownloader
models = [
'squeezenet',
'resnet50',
'vgg19',
]
mf = ModelDownloader()
class Model:
def __init__(self, model_name):
self.init_net, self.predict_net, self.value_info = mf.get_c2_model(model_name)
for model in models:
try:
locals()['c2_' + model] = importlib.import_module('caffe2.python.models.' + model)
except ImportError:
locals()['c2_' + model] = Model(model)
# squeezenet
def relay_squeezenet():
return squeezenet.get_workload()

Просмотреть файл

@ -0,0 +1,132 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# coding: utf-8
# pylint: disable=unused-argument
"""
Symbol of SqueezeNet
Reference:
Iandola, Forrest N., et al.
"Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016).
"""
from tvm import relay
from tvm.relay.testing import create_workload
# Helpers
def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels, prefix=""):
net = _make_fire_conv(net, squeeze_channels, 1, 0, "%s/squeeze1x1" % prefix)
left = _make_fire_conv(net, expand1x1_channels, 1, 0, "%s/expand1x1" % prefix)
right = _make_fire_conv(net, expand3x3_channels, 3, 1, "%s/expand3x3" % prefix)
# NOTE : Assume NCHW layout here
net = relay.concatenate((left, right), axis=1)
return net
def _make_fire_conv(net, channels, kernel_size, padding=0, prefix=""):
net = relay.nn.conv2d(net, relay.var("%s_weight" % prefix),
channels=channels,
kernel_size=(kernel_size, kernel_size),
padding=(padding, padding))
net = relay.nn.bias_add(net, relay.var("%s_bias" % prefix))
net = relay.nn.relu(net)
return net
# Net
def get_net(batch_size, image_shape, num_classes, dtype):
"""Get symbol of SqueezeNet
Parameters
----------
batch_size : int
The batch size used in the model
image_shape : tuple
The input image shape
num_classes: int
The number of classification results
dtype : str
The data type
"""
data_shape = (batch_size,) + image_shape
net = relay.var("data", shape=data_shape, dtype=dtype)
net = relay.nn.conv2d(net, relay.var("conv1_weight"),
channels=64,
kernel_size=(3, 3),
strides=(2, 2),
padding=(0, 0))
net = relay.nn.bias_add(net, relay.var("conv1_bias"))
net = relay.nn.relu(net)
net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
net = _make_fire(net, 16, 64, 64, 'fire2')
net = _make_fire(net, 16, 64, 64, "fire3")
net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
net = _make_fire(net, 32, 128, 128, "fire4")
net = _make_fire(net, 32, 128, 128, "fire5")
net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2))
net = _make_fire(net, 48, 192, 192, "fire6")
net = _make_fire(net, 48, 192, 192, "fire7")
net = _make_fire(net, 64, 256, 256, "fire8")
net = _make_fire(net, 64, 256, 256, "fire9")
net = relay.nn.dropout(net, rate=0.5)
net = relay.nn.conv2d(net, relay.var('conv10_weight'), channels=num_classes, kernel_size=(1, 1))
net = relay.nn.bias_add(net, relay.var("conv10_bias"))
net = relay.nn.relu(net)
net = relay.nn.global_avg_pool2d(net)
net = relay.nn.softmax(net, axis=1)
args = relay.ir_pass.free_vars(net)
return relay.Function(args, net)
def get_workload(batch_size=1,
image_shape=(3, 224, 224),
num_classes=1000,
dtype="float32"):
"""Get benchmark workload for SqueezeNet
Parameters
----------
batch_size : int, optional
The batch size used in the model
num_classes : int, optional
Number of classes
image_shape : tuple, optional
The input image shape
dtype : str, optional
The data type
Returns
-------
net : relay.Function
The computational graph
params : dict of str to NDArray
The parameters.
"""
net = get_net(batch_size, image_shape, num_classes, dtype)
return create_workload(net)

Просмотреть файл

@ -0,0 +1,87 @@
import numpy as np
import tvm
from tvm.contrib import graph_runtime
from tvm.relay.testing.config import ctx_list
from tvm import relay
from model_zoo import c2_squeezenet, c2_resnet50, c2_vgg19
from caffe2.python import workspace
def get_tvm_output(model,
input_data,
target,
ctx,
output_shape,
output_dtype='float32'):
""" Generic function to execute and get tvm output"""
# supporting multiple inputs in caffe2 in a bit tricky,
# because the input names can appear at the beginning or end of model.predict_net.external_input
assert isinstance(input_data, np.ndarray)
# here we use the first input blob to the first op to get the input name
input_names = model.predict_net.op[0].input[0]
shape_dict = {input_names: input_data.shape}
dtype_dict = {input_names: input_data.dtype}
func, params = relay.frontend.from_caffe2(model.init_net, model.predict_net, shape_dict, dtype_dict)
with relay.build_config(opt_level=3):
graph, lib, params = relay.build(func, target, params=params)
m = graph_runtime.create(graph, lib, ctx)
# set inputs
m.set_input(input_names, tvm.nd.array(input_data.astype(input_data.dtype)))
m.set_input(**params)
# execute
m.run()
# get outputs
if isinstance(output_shape, list) and isinstance(output_dtype, list):
tvm_output_list = []
for i, s in enumerate(output_shape):
tvm_output = m.get_output(i, tvm.nd.empty((s), output_dtype[i]))
tvm_output_list.append(tvm_output.asnumpy())
return tvm_output_list
else:
tvm_output = m.get_output(0, tvm.nd.empty((output_shape),
output_dtype))
return tvm_output.asnumpy()
def get_caffe2_output(model, x, dtype='float32'):
workspace.RunNetOnce(model.init_net)
input_blob = model.predict_net.op[0].input[0]
workspace.FeedBlob(input_blob, x.astype(dtype))
workspace.RunNetOnce(model.predict_net)
output_blob = model.predict_net.external_output[0]
c2_output = workspace.FetchBlob(output_blob)
return c2_output
def verify_caffe2_forward_impl(model, data_shape, out_shape):
dtype = 'float32'
data = np.random.uniform(size=data_shape).astype(dtype)
c2_out = get_caffe2_output(model, data, dtype)
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, data, target, ctx, out_shape, dtype)
tvm.testing.assert_allclose(c2_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_forward_squeezenet1_1():
verify_caffe2_forward_impl(c2_squeezenet, (1, 3, 224, 224), (1, 1000, 1, 1))
def test_forward_resnet50():
verify_caffe2_forward_impl(c2_resnet50, (1, 3, 224, 224), (1, 1000))
def test_forward_vgg19():
verify_caffe2_forward_impl(c2_vgg19, (1, 3, 224, 224), (1, 1000))
if __name__ == '__main__':
test_forward_squeezenet1_1()
test_forward_resnet50()
test_forward_vgg19()

Просмотреть файл

@ -0,0 +1,21 @@
"""Test graph equality of caffe2 models."""
from tvm import relay
from model_zoo import c2_squeezenet, relay_squeezenet
def compare_graph(f1, f2):
f1 = relay.ir_pass.infer_type(f1)
f2 = relay.ir_pass.infer_type(f2)
assert relay.ir_pass.alpha_equal(f1, f2)
def test_squeeze_net():
shape_dict = {'data': (1, 3, 224, 224)}
dtype_dict = {'data': 'float32'}
from_c2_func, _ = relay.frontend.from_caffe2(c2_squeezenet.init_net, c2_squeezenet.predict_net, shape_dict, dtype_dict)
relay_func, _ = relay_squeezenet()
compare_graph(from_c2_func, relay_func)
if __name__ == '__main__':
test_squeeze_net()

Просмотреть файл

@ -47,3 +47,7 @@ python3 -m nose -v tests/python/frontend/nnvm_to_relay || exit -1
echo "Running relay TFLite frontend test..."
python3 -m nose -v tests/python/frontend/tflite || exit -1
echo "Running relay caffe2 frondend test..."
python3 -m nose -v tests/python/frontend/caffe2 || exit -1

Просмотреть файл

@ -0,0 +1,130 @@
"""
Compile Caffe2 Models
=====================
**Author**: `Hiroyuki Makino <https://makihiro.github.io/>`_
This article is an introductory tutorial to deploy Caffe2 models with Relay.
For us to begin with, Caffe2 should be installed.
A quick solution is to install via conda
.. code-block:: bash
# for cpu
conda install pytorch-nightly-cpu -c pytorch
# for gpu with CUDA 8
conda install pytorch-nightly cuda80 -c pytorch
or please refer to official site
https://caffe2.ai/docs/getting-started.html
"""
######################################################################
# Utils for downloading files
# ----------------------------
def download(url, path, overwrite=False):
import os
if os.path.isfile(path) and not overwrite:
print('File {} exists, skip.'.format(path))
return
print('Downloading from url {} to {}'.format(url, path))
try:
import urllib.request
urllib.request.urlretrieve(url, path)
except:
import urllib
urllib.urlretrieve(url, path)
######################################################################
# Load pretrained Caffe2 model
# ----------------------------
# We load a pretrained resnet50 classification model provided by Caffe2.
from caffe2.python.models.download import ModelDownloader
mf = ModelDownloader()
class Model:
def __init__(self, model_name):
self.init_net, self.predict_net, self.value_info = mf.get_c2_model(model_name)
resnet50 = Model('resnet50')
######################################################################
# Load a test image
# ------------------
# A single cat dominates the examples!
from PIL import Image
from matplotlib import pyplot as plt
import numpy as np
img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
download(img_url, 'cat.png')
img = Image.open('cat.png').resize((224, 224))
plt.imshow(img)
plt.show()
# input preprocess
def transform_image(image):
image = np.array(image) - np.array([123., 117., 104.])
image /= np.array([58.395, 57.12, 57.375])
image = image.transpose((2, 0, 1))
image = image[np.newaxis, :].astype('float32')
return image
data = transform_image(img)
######################################################################
# Compile the model on Relay
# --------------------------
# Caffe2 input tensor name, shape and type
input_name = resnet50.predict_net.op[0].input[0]
shape_dict = {input_name: data.shape}
dtype_dict = {input_name: data.dtype}
# parse Caffe2 model and convert into Relay computation graph
from tvm import relay
func, params = relay.frontend.from_caffe2(resnet50.init_net, resnet50.predict_net, shape_dict, dtype_dict)
# compile the model
# target x86 cpu
target = 'llvm'
with relay.build_config(opt_level=3):
graph, lib, params = relay.build(func, target, params=params)
######################################################################
# Execute on TVM
# ---------------
# The process is no different from other examples.
import tvm
from tvm.contrib import graph_runtime
# context x86 cpu, use tvm.gpu(0) if you run on GPU
ctx = tvm.cpu(0)
# create a runtime executor module
m = graph_runtime.create(graph, lib, ctx)
# set inputs
m.set_input(input_name, tvm.nd.array(data.astype('float32')))
# set related params
m.set_input(**params)
# execute
m.run()
# get outputs
tvm_out = m.get_output(0)
top1_tvm = np.argmax(tvm_out.asnumpy()[0])
#####################################################################
# Look up synset name
# -------------------
# Look up prediction top 1 index in 1000 class synset.
from caffe2.python import workspace
synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/',
'4d0b62f3d01426887599d4f7ede23ee5/raw/',
'596b27d23537e5a1b5751d2b0481ef172f58b539/',
'imagenet1000_clsid_to_human.txt'])
synset_name = 'synset.txt'
download(synset_url, synset_name)
with open(synset_name) as f:
synset = eval(f.read())
print('Relay top-1 id: {}, class name: {}'.format(top1_tvm, synset[top1_tvm]))
# confirm correctness with caffe2 output
p = workspace.Predictor(resnet50.init_net, resnet50.predict_net)
caffe2_out = p.run({input_name: data})
top1_caffe2 = np.argmax(caffe2_out)
print('Caffe2 top-1 id: {}, class name: {}'.format(top1_caffe2, synset[top1_caffe2]))