Fix Error messages in tflite.py (#3320)
This commit is contained in:
Родитель
45ef90c08b
Коммит
bfa966a86b
|
@ -180,7 +180,6 @@ def _convert_convolution(insym, keras_layer, symtab):
|
|||
else:
|
||||
kernel_h, kernel_w, in_channels, n_filters = weightList[0].shape
|
||||
weight = weightList[0].transpose([3, 2, 0, 1])
|
||||
dilation = [1, 1]
|
||||
if isinstance(keras_layer.dilation_rate, (list, tuple)):
|
||||
dilation = [keras_layer.dilation_rate[0], keras_layer.dilation_rate[1]]
|
||||
else:
|
||||
|
|
|
@ -203,7 +203,6 @@ def _convert_convolution(inexpr, keras_layer, etab):
|
|||
else:
|
||||
kernel_h, kernel_w, in_channels, n_filters = weightList[0].shape
|
||||
weight = weightList[0].transpose([3, 2, 0, 1])
|
||||
dilation = [1, 1]
|
||||
if isinstance(keras_layer.dilation_rate, (list, tuple)):
|
||||
dilation = [keras_layer.dilation_rate[0], keras_layer.dilation_rate[1]]
|
||||
else:
|
||||
|
|
|
@ -156,7 +156,7 @@ class OperatorConverter(object):
|
|||
if tensor_wrapper.tensor.Type() == TensorType.INT32:
|
||||
return np.frombuffer(tensor_wrapper.buffer.DataAsNumpy(), dtype=np.int32).reshape(
|
||||
tensor_wrapper.tensor.ShapeAsNumpy())
|
||||
raise NotImplementedError("Not support tensor type {}"
|
||||
raise NotImplementedError("Tensor type {} is currently not supported"
|
||||
.format(str(tensor_wrapper.tensor.Type())))
|
||||
|
||||
def get_tensor_type_str(self, tensor_type):
|
||||
|
@ -172,7 +172,8 @@ class OperatorConverter(object):
|
|||
return "float32"
|
||||
if tensor_type == TensorType.INT32:
|
||||
return "int32"
|
||||
raise NotImplementedError("Not support tensor type {}".format(str(tensor_type)))
|
||||
raise NotImplementedError("Tensor type {} is currently not supported"
|
||||
.format(str(tensor_type)))
|
||||
|
||||
def convert_conv2d(self, op):
|
||||
"""Convert TFLite conv2d"""
|
||||
|
@ -450,8 +451,8 @@ class OperatorConverter(object):
|
|||
conv_options = DepthwiseConv2DOptions()
|
||||
conv_options.Init(op_options.Bytes, op_options.Pos)
|
||||
depth_multiplier = conv_options.DepthMultiplier()
|
||||
assert depth_multiplier == 1, "TF frontend have transformed it be 1 " \
|
||||
"no matter original value be set by 0.25, 0.5 or any else"
|
||||
assert depth_multiplier == 1, "TF frontend transforms it to be 1 regardless of what " \
|
||||
"original value is set to 0.25, 0.5 or anything else"
|
||||
else:
|
||||
raise tvm.error.OpNotImplemented(
|
||||
'Operator {} is not supported for frontend TFLite.'.format(conv_type))
|
||||
|
|
|
@ -21,7 +21,7 @@ from tvm.contrib import graph_runtime
|
|||
from tvm.relay.testing.config import ctx_list
|
||||
import keras
|
||||
|
||||
# prevent keras from using up all gpu memory
|
||||
# prevent Keras from using up all gpu memory
|
||||
import tensorflow as tf
|
||||
from keras.backend.tensorflow_backend import set_session
|
||||
config = tf.ConfigProto()
|
||||
|
|
Загрузка…
Ссылка в новой задаче