[QUANTIZE] Memorizing the quantize node mapping (#3233)

* [QUANTIZE] Support for clip operator

* [QUANTIZE] Memorizing the quantize node mapping.

* [QUANTIZE] Remove use_stop_fusion and skip_k_conv in qconfig

* update

* update

* update

* update
This commit is contained in:
ziheng 2019-06-22 14:59:41 -07:00 коммит произвёл GitHub
Родитель b796e335db
Коммит bfb4884e47
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
6 изменённых файлов: 118 добавлений и 92 удалений

Просмотреть файл

@ -17,7 +17,6 @@
"""The interface of expr function exposed from C++."""
from __future__ import absolute_import
import logging
from ... import build_module as _build
from ... import container as _container
from ..._ffi.function import _init_api, register_func
@ -50,8 +49,8 @@ def lower(sch, inputs, func_name, source_func):
# pylint: disable=broad-except
try:
f = _build.lower(sch, inputs, name=func_name)
logging.debug("lower function %s", func_name)
logging.debug("%s", _build.lower(sch, inputs, simple_mode=True))
# logging.debug("lower function %s", func_name)
# logging.debug("%s", _build.lower(sch, inputs, simple_mode=True))
except Exception:
msg = traceback.format_exc()
msg += "Error during compile function\n"

Просмотреть файл

@ -22,7 +22,7 @@ import warnings
import topi
from . import _quantize
from .quantize import QAnnotateKind, current_qconfig
from .quantize import _conv_counter, _set_conv_counter
from .quantize import annotate_context
from .. import expr as _expr
from .. import op as _op
from ..op import op as _reg
@ -116,7 +116,6 @@ def register_annotate_function(op_name, frewrite=None, level=10):
return _register(frewrite) if frewrite is not None else _register
@register_func("relay.quantize.attach_simulated_quantize")
def attach_simulated_quantize(data, kind, sign=True, rounding="round"):
"""Attach a simulated quantize operation after input data expr.
@ -133,11 +132,20 @@ def attach_simulated_quantize(data, kind, sign=True, rounding="round"):
if data.attrs.kind == kind and data.attrs.sign == sign and data.attrs.rounding == rounding:
return data
actx = annotate_context()
key = tuple([data, kind, sign, rounding])
if key in actx.qnode_map:
return actx.qnode_map[key]
dom_scale = _expr.var("dom_scale")
clip_min = _expr.var("clip_min")
clip_max = _expr.var("clip_max")
return _quantize.simulated_quantize(
qnode = _quantize.simulated_quantize(
data, dom_scale, clip_min, clip_max, kind, sign, rounding)
actx.qnode_map[key] = qnode
return qnode
register_func("relay.quantize.attach_simulated_quantize", attach_simulated_quantize)
@register_annotate_function("nn.contrib_conv2d_NCHWc")
@ -152,18 +160,13 @@ def conv2d_rewrite(ref_call, new_args, ctx):
"""Rewrite function for conv2d. Lhs of conv will be quantized to
input field, and rhs of conv will be quantized to weight field.
Output would be in activation field"""
cnt = _conv_counter()
if cnt < current_qconfig().skip_k_conv:
_set_conv_counter(cnt + 1)
return None
actx = annotate_context()
if current_qconfig().skip_conv_layers is not None:
leave_alone_indices = [int(x) for x in current_qconfig().skip_conv_layers]
if cnt in leave_alone_indices:
_set_conv_counter(cnt + 1)
skipped_indices = [int(x) for x in current_qconfig().skip_conv_layers]
if actx.conv2d_counter() in skipped_indices:
actx.count_conv2d()
return None
_set_conv_counter(cnt + 1)
actx.count_conv2d()
lhs_expr, lhs_kind = _get_expr_kind(new_args[0])
rhs_expr, rhs_kind = _get_expr_kind(new_args[1])
@ -179,17 +182,21 @@ def conv2d_rewrite(ref_call, new_args, ctx):
return QAnnotateExpr(expr, QAnnotateKind.ACTIVATION)
def check_to_skip():
"""Check the index of conv2d layer to decide whether to skip the current operator."""
if current_qconfig().skip_conv_layers is not None:
skipped_indices = [int(x) for x in current_qconfig().skip_conv_layers]
if annotate_context().conv2d_counter() - 1 in skipped_indices:
return True
return False
@register_annotate_function("nn.dense")
def dense_rewrite(ref_call, new_args, ctx):
"""Rewrite function for dense. Lhs of dense will be quantized to input field, and rhs of
dense will be quantized to weight field. Output would be in activation field."""
cnt = _conv_counter()
if cnt < current_qconfig().skip_k_conv:
if check_to_skip():
return None
if current_qconfig().skip_conv_layers is not None:
leave_alone_indices = [int(x) for x in current_qconfig().skip_conv_layers]
if cnt - 1 in leave_alone_indices:
return None
lhs_expr, lhs_kind = _get_expr_kind(new_args[0])
rhs_expr, rhs_kind = _get_expr_kind(new_args[1])
@ -207,13 +214,8 @@ def dense_rewrite(ref_call, new_args, ctx):
@register_annotate_function("multiply")
def multiply_rewrite(ref_call, new_args, ctx):
"""Rewrite function for multiply."""
cnt = _conv_counter()
if cnt <= current_qconfig().skip_k_conv:
if check_to_skip():
return None
if current_qconfig().skip_conv_layers is not None:
leave_alone_indices = [int(x) for x in current_qconfig().skip_conv_layers]
if cnt - 1 in leave_alone_indices:
return None
lhs_expr, lhs_kind = _get_expr_kind(new_args[0])
rhs_expr, rhs_kind = _get_expr_kind(new_args[1])
@ -234,13 +236,8 @@ def multiply_rewrite(ref_call, new_args, ctx):
@register_annotate_function("add")
def add_rewrite(ref_call, new_args, ctx):
"""Rewrite function for add."""
cnt = _conv_counter()
if cnt <= current_qconfig().skip_k_conv:
if check_to_skip():
return None
if current_qconfig().skip_conv_layers is not None:
leave_alone_indices = [int(x) for x in current_qconfig().skip_conv_layers]
if cnt - 1 in leave_alone_indices:
return None
lhs_expr, lhs_kind = _get_expr_kind(new_args[0])
rhs_expr, rhs_kind = _get_expr_kind(new_args[1])
@ -265,15 +262,25 @@ def add_rewrite(ref_call, new_args, ctx):
return QAnnotateExpr(expr, QAnnotateKind.ACTIVATION)
@register_annotate_function("stop_fusion")
def stop_fusion_rewrite(ref_call, new_args, ctx):
"""Rewrite function for add."""
if check_to_skip():
return None
x_expr, x_kind = _get_expr_kind(new_args[0])
if x_kind is None:
return None
ret_expr = attach_simulated_quantize(x_expr, QAnnotateKind.INPUT)
ret_expr = _forward_op(ref_call, [ret_expr])
return QAnnotateExpr(ret_expr, QAnnotateKind.INPUT)
def identity_rewrite(ref_call, new_args, ctx):
"""Simply forward the original operation"""
cnt = _conv_counter()
if cnt <= current_qconfig().skip_k_conv:
if check_to_skip():
return None
if current_qconfig().skip_conv_layers is not None:
leave_alone_indices = [int(x) for x in current_qconfig().skip_conv_layers]
if cnt - 1 in leave_alone_indices:
return None
x_expr, x_kind = _get_expr_kind(new_args[0])
if x_kind is None:
@ -283,6 +290,7 @@ def identity_rewrite(ref_call, new_args, ctx):
return QAnnotateExpr(ret_expr, x_kind)
register_annotate_function("clip", identity_rewrite)
register_annotate_function("nn.relu", identity_rewrite)
register_annotate_function("strided_slice", identity_rewrite)
register_annotate_function("nn.avg_pool2d", identity_rewrite)
@ -290,13 +298,8 @@ register_annotate_function("nn.avg_pool2d", identity_rewrite)
def pool2d_rewrite(ref_call, new_args, ctx):
"""Rewrite function for max pool2d"""
cnt = _conv_counter()
if cnt <= current_qconfig().skip_k_conv:
if check_to_skip():
return None
if current_qconfig().skip_conv_layers is not None:
leave_alone_indices = [int(x) for x in current_qconfig().skip_conv_layers]
if cnt - 1 in leave_alone_indices:
return None
expr, x_kind = _get_expr_kind(new_args[0])
@ -314,13 +317,8 @@ register_annotate_function("nn.max_pool2d", pool2d_rewrite)
@register_annotate_function("concatenate")
def concatenate_rewrite(ref_call, new_args, ctx):
"""Rewrite function for concatenate"""
cnt = _conv_counter()
if cnt <= current_qconfig().skip_k_conv:
if check_to_skip():
return None
if current_qconfig().skip_conv_layers is not None:
leave_alone_indices = [int(x) for x in current_qconfig().skip_conv_layers]
if cnt - 1 in leave_alone_indices:
return None
input_tuple = new_args[0]
expr_list = [_get_expr_kind(x)[0] for x in input_tuple]

Просмотреть файл

@ -71,12 +71,10 @@ class QConfig(NodeBase):
"dtype_weight": "int8",
"dtype_activation": "int32",
"global_scale": 8.0,
"skip_k_conv": 1,
"skip_conv_layers": None,
"skip_conv_layers": [0],
"round_for_shift": True,
"store_lowbit_output": True,
"debug_enabled_ops": None,
"use_stop_fusion": True
}
# pylint: disable=no-member
@ -138,11 +136,8 @@ def qconfig(**kwargs):
global_scale: float
The global scale for calibration.
skip_k_conv: int
The number of skipped conv2d.
skip_conv_layers: list
Different way of specifying which layers to avoid. Provide a list of indices
Specifying which layers to be skipped. Provide a list of indices
that indicate which conv2d layers to leave untouched.
round_for_shift: boolean
@ -152,9 +147,10 @@ def qconfig(**kwargs):
Whether to store low-bit integer back as output before dequantizing.
Some accelerators need this, e.g. VTA.
use_stop_fusion: boolean
Whether add stop_fusion when casting to dtype_activation. stop_fusion forces lowbit
results to be stored in memory.
debug_enabled_ops: None or list of str
Partially quantize specified operators for debugging. The default value
is None, which means will try to call all operartors' annotate rewrite
function.
Returns
-------
@ -166,18 +162,35 @@ def qconfig(**kwargs):
return _make.node("relay.quantize.QConfig", **node_args)
CONV_COUNTER = 0
class AnnotateContext(object):
"""A global singleton annotate scope"""
Current = None
def __init__(self):
self.qnode_map = dict()
self._conv2d_counter = 0
def __enter__(self):
self._conv2d_counter = 0
return self
def conv2d_counter(self):
"""Get the counter for conv2d."""
return self._conv2d_counter
def count_conv2d(self):
"""Increase the value of the conv2d counter by one."""
self._conv2d_counter += 1
def __exit__(self, ptype, value, traceback):
pass
def _conv_counter():
"""Get the global counter for conv2d."""
return CONV_COUNTER
def _set_conv_counter(n):
"""Set the value of the global conv2d counter."""
global CONV_COUNTER
CONV_COUNTER = n
def annotate_context():
"""Get the global singleton scope"""
if AnnotateContext.Current is None:
AnnotateContext.Current = AnnotateContext()
return AnnotateContext.Current
def calibrate(graph, mod=None, ctx=None):
@ -324,15 +337,15 @@ def quantize(graph, params=None, dataset=None):
calibrate_pass = _transform.function_pass(calibrate, opt_level=1,
name="QuantizeCalibrate")
_set_conv_counter(0) # reset counter
quantize_seq = _transform.Sequential([annotate(),
calibrate_pass,
realize(),
_transform.FoldConstant()])
with _transform.PassContext(opt_level=3,
required_pass=["QuantizeAnnotate",
"QuantizeCalibrate",
"QuantizeRealize"]):
mod = optimize(mod)
mod = quantize_seq(mod)
with annotate_context():
with _transform.PassContext(opt_level=3,
required_pass=["QuantizeAnnotate",
"QuantizeCalibrate",
"QuantizeRealize"]):
mod = optimize(mod)
mod = quantize_seq(mod)
return mod[mod.entry_func.name_hint]

Просмотреть файл

@ -6,9 +6,9 @@
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
@ -393,7 +393,7 @@ Array<Expr> UnifyDTypeScale(const Array<Expr>& ref_args,
} else if (ref_arg && ref_arg->op.same_as(simulated_quantize) &&
ref_arg->attrs.as<SimulatedQuantizeAttrs>()->kind == kQInput) {
auto new_arg = Cast(ret[i], cfg->dtype_input);
if (cfg->use_stop_fusion) {
if (cfg->store_lowbit_output) {
new_arg = StopFusion(new_arg);
}
ret.Set(i, Cast(new_arg, dtype));
@ -431,6 +431,28 @@ Expr AddRealize(const Call& ref_call,
RELAY_REGISTER_OP("add")
.set_attr<FForwardRewrite>("FQRealizeRewrite", AddRealize);
Expr ClipRealize(const Call& ref_call,
const Array<Expr>& new_args,
const NodeRef& ctx) {
CHECK_EQ(new_args.size(), 1);
if (const auto* n = new_args[0].as<QRealizeIntExprNode>()) {
const auto ref_attrs = ref_call->attrs.as<ClipAttrs>();
auto attrs = make_node<ClipAttrs>();
double dom_scale = GetScalarFromConstant<float>(n->dom_scale);
attrs->a_min = ref_attrs->a_min / dom_scale;
attrs->a_max = ref_attrs->a_max / dom_scale;
Expr ret = CallNode::make(ref_call->op,
{n->data}, Attrs(attrs), ref_call->type_args);
return QRealizeIntExprNode::make(ret, n->dom_scale, n->dtype);
}
CHECK(!new_args[0]->derived_from<TempExprNode>());
return Expr(nullptr);
}
RELAY_REGISTER_OP("clip")
.set_attr<FForwardRewrite>("FQRealizeRewrite", ClipRealize);
Expr ConcatenateRealize(const Call& ref_call,
const Array<Expr>& new_args,
@ -572,12 +594,10 @@ TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable)
p->stream << "nbit_weight=" << op->nbit_weight << ", ";
p->stream << "nbit_activation=" << op->nbit_activation << ", ";
p->stream << "global_scale=" << op->global_scale << ", ";
p->stream << "skip_k_conv==" << op->skip_k_conv << ", ";
p->stream << "skip_conv_layers==" << op->skip_conv_layers << ", ";
p->stream << "round_for_shift==" << op->round_for_shift << ", ";
p->stream << "store_lowbit_output==" << op->store_lowbit_output << ", ";
p->stream << "debug_enabled_ops==" << op->debug_enabled_ops << ", ";
p->stream << "use_stop_fusion==" << op->use_stop_fusion;
p->stream << "debug_enabled_ops==" << op->debug_enabled_ops;
p->stream << ")";
});

Просмотреть файл

@ -6,9 +6,9 @@
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
@ -125,12 +125,10 @@ class QConfigNode : public Node {
DataType dtype_weight = Int(8);
DataType dtype_activation = Int(32);
double global_scale = 8.0;
int skip_k_conv = 1;
Array<Expr> skip_conv_layers = Array<Expr>(NodePtr<Node>(nullptr));
bool round_for_shift = true;
bool store_lowbit_output = true;
Array<Expr> debug_enabled_ops = Array<Expr>(NodePtr<Node>(nullptr));
bool use_stop_fusion = true;
void VisitAttrs(AttrVisitor* v) final {
v->Visit("nbit_input", &nbit_input);
@ -140,12 +138,10 @@ class QConfigNode : public Node {
v->Visit("dtype_weight", &dtype_weight);
v->Visit("dtype_activation", &dtype_activation);
v->Visit("global_scale", &global_scale);
v->Visit("skip_k_conv", &skip_k_conv);
v->Visit("skip_conv_layers", &skip_conv_layers);
v->Visit("round_for_shift", &round_for_shift);
v->Visit("store_lowbit_output", &store_lowbit_output);
v->Visit("debug_enabled_ops", &debug_enabled_ops);
v->Visit("use_stop_fusion", &use_stop_fusion);
}
static constexpr const char* _type_key = "relay.quantize.QConfig";

Просмотреть файл

@ -81,7 +81,7 @@ def test_quantize_pass():
graph = make_graph(data)
dataset, params = make_dataset(graph, 10)
with qtz.qconfig(skip_k_conv=0, global_scale=4.0,
with qtz.qconfig(skip_conv_layers=None, global_scale=4.0,
round_for_shift=False, store_lowbit_output=False):
qgraph0 = qtz.quantize(graph, params)
qgraph0 = relay.ir_pass.infer_type(qgraph0)