* improved conv2d for last group of workloads

* conv2d_nchw improved on 14_256_256 and 56_64_128
This commit is contained in:
Leyuan Wang 2017-09-08 16:15:11 -07:00 коммит произвёл Tianqi Chen
Родитель 400c1c483e
Коммит edca6830dc
2 изменённых файлов: 218 добавлений и 89 удалений

Просмотреть файл

@ -207,7 +207,6 @@ def test_schedule_cache_relayout3():
if __name__ == "__main__":
test_schedule_cache_relayout4()
test_schedule_cache_relayout3()
test_schedule_cache_relayout2()
test_schedule_cache_relayout1()

Просмотреть файл

@ -49,107 +49,237 @@ def conv2d_224_3_64(s, temp_S, Filter_S, Out, Out_L):
def conv2d_56_64_128(s, temp_S, Filter_S, Out, Out_L, flag):
"""Schedule conv2d for specific feature_in_out_filter pattern"""
# sheduler params
num_thread = 8
vthread = 2
opart2 = 4
ofactor = 64
wfactor = 28
ifactor = 8
if flag > 256:
wfactor = 14
sfactor = max(1, ofactor//(opart2*2))
spart = max(1, (wfactor + vthread-1) // vthread)
block_x = tvm.thread_axis("blockIdx.x")
block_y = tvm.thread_axis("blockIdx.y")
block_z = tvm.thread_axis("blockIdx.z")
thread_x = tvm.thread_axis((0, num_thread), "threadIdx.x")
thread_y = tvm.thread_axis((0, num_thread), "threadIdx.y")
thread_xz = tvm.thread_axis((0, vthread), "vthread", name="vx")
thread_yz = tvm.thread_axis((0, vthread), "vthread", name="vy")
if util.get_const_int(Filter_S.shape[0]) == util.get_const_int(Filter_S.shape[1]):
num_thread_x = 8
num_thread_y = 8
vthread_x = 7
vthread_y = 2
ifactor = 8
i, oc, h, w = s[Out].op.axis
ooc, ioc = s[Out].split(oc, factor=ofactor)
ow, iw = s[Out].split(w, factor=wfactor)
ow = s[Out].fuse(ow, h)
oioc, iioc = s[Out].split(ioc, nparts=vthread)
oiw, iiw = s[Out].split(iw, nparts=vthread)
oiioc, iiioc = s[Out].split(iioc, nparts=opart2)
s[Out].reorder(i, ooc, ow, oioc, oiw, oiioc, iiw, iiioc)
s[Out].bind(iiioc, thread_x)
s[Out].bind(iiw, thread_y)
s[Out].bind(oiioc, thread_xz)
s[Out].bind(oiw, thread_yz)
s[Out].bind(oioc, block_x)
s[Out].bind(ow, block_y)
s[Out].bind(ooc, block_z)
block_x = tvm.thread_axis("blockIdx.x")
block_y = tvm.thread_axis("blockIdx.y")
thread_x = tvm.thread_axis((0, num_thread_x), "threadIdx.x")
thread_y = tvm.thread_axis((0, num_thread_y), "threadIdx.y")
thread_xz = tvm.thread_axis((0, vthread_x), "vthread", name="vx")
thread_yz = tvm.thread_axis((0, vthread_y), "vthread", name="vy")
s[Out_L].compute_at(s[Out], iiioc)
i, oc, h, w = s[Out].op.axis
w = s[Out].fuse(h, w)
ow, iw = s[Out].split(w, factor=num_thread_x*vthread_x)
ooc, ioc = s[Out].split(oc, factor=num_thread_y*vthread_y)
oiw, iiw = s[Out].split(iw, nparts=vthread_x)
oioc, iioc = s[Out].split(ioc, nparts=vthread_y)
s[Out].reorder(i, ooc, ow, oioc, oiw, iioc, iiw)
s[Out].bind(iiw, thread_x)
s[Out].bind(iioc, thread_y)
s[Out].bind(oiw, thread_xz)
s[Out].bind(oioc, thread_yz)
s[Out].bind(ow, block_x)
s[Out].bind(ooc, block_y)
# schedule Out_L local write
i, oc, h, w = s[Out_L].op.axis
ic, dh, dw = s[Out_L].op.reduce_axis
oic, iic = s[Out_L].split(ic, factor=ifactor)
s[Out_L].reorder(oic, dh, dw, iic, h, w)
s[Out_L].fuse(iic, dw)
dh = s[Out_L].fuse(dh, oic)
s[Out_L].compute_at(s[Out], iiw)
s[temp_S].compute_at(s[Out_L], dh)
s[Filter_S].compute_at(s[Out_L], dh)
# schedule Out_L local write
i, oc, h, w = s[Out_L].op.axis
ic, dh, dw = s[Out_L].op.reduce_axis
oic, iic = s[Out_L].split(ic, factor=ifactor)
s[Out_L].reorder(oic, dh, dw, iic, h, w)
#schedule temp_S shared mem load
i, ic, h, w = s[temp_S].op.axis
_, iic = s[temp_S].split(ic, factor=sfactor)
_, iw = s[temp_S].split(w, factor=spart)
s[temp_S].bind(iic, thread_x)
s[temp_S].bind(iw, thread_y)
s[temp_S].compute_at(s[Out_L], oic)
s[Filter_S].compute_at(s[Out_L], dw)
#schedule Filter_S shared mem load
i, oc, h, w = s[Filter_S].op.axis
_, ioc = s[Filter_S].split(oc, factor=sfactor)
_, ii = s[Filter_S].split(i, factor=spart)
s[Filter_S].bind(ioc, thread_x)
s[Filter_S].bind(ii, thread_y)
#schedule temp_S shared mem load
i, ic, h, w = s[temp_S].op.axis
_, iic = s[temp_S].split(ic, factor=num_thread_y)
w = s[temp_S].fuse(h, w)
_, iw = s[temp_S].split(w, factor=num_thread_x)
s[temp_S].bind(iic, thread_y)
s[temp_S].bind(iw, thread_x)
def conv2d_14_256_256(s, temp_S, Filter_S, Out, Out_L):
i, oc, h, w = s[Filter_S].op.axis
_, ioc = s[Filter_S].split(oc, factor=num_thread_y)
_, ii = s[Filter_S].split(i, factor=num_thread_x)
s[Filter_S].bind(ioc, thread_y)
s[Filter_S].bind(ii, thread_x)
else:
# sheduler params
num_thread = 8
vthread = 2
opart2 = 4
ofactor = 64
wfactor = 28
ifactor = 8
if flag > 256:
wfactor = 14
sfactor = max(1, ofactor//(opart2*2))
spart = max(1, (wfactor + vthread-1) // vthread)
block_x = tvm.thread_axis("blockIdx.x")
block_y = tvm.thread_axis("blockIdx.y")
block_z = tvm.thread_axis("blockIdx.z")
thread_x = tvm.thread_axis((0, num_thread), "threadIdx.x")
thread_y = tvm.thread_axis((0, num_thread), "threadIdx.y")
thread_xz = tvm.thread_axis((0, vthread), "vthread", name="vx")
thread_yz = tvm.thread_axis((0, vthread), "vthread", name="vy")
i, oc, h, w = s[Out].op.axis
ooc, ioc = s[Out].split(oc, factor=ofactor)
ow, iw = s[Out].split(w, factor=wfactor)
ow = s[Out].fuse(ow, h)
oioc, iioc = s[Out].split(ioc, nparts=vthread)
oiw, iiw = s[Out].split(iw, nparts=vthread)
oiioc, iiioc = s[Out].split(iioc, nparts=opart2)
s[Out].reorder(i, ooc, ow, oioc, oiw, oiioc, iiw, iiioc)
s[Out].bind(iiioc, thread_x)
s[Out].bind(iiw, thread_y)
s[Out].bind(oiioc, thread_xz)
s[Out].bind(oiw, thread_yz)
s[Out].bind(oioc, block_x)
s[Out].bind(ow, block_y)
s[Out].bind(ooc, block_z)
s[Out_L].compute_at(s[Out], iiioc)
if util.get_const_int(Filter_S.shape[1]) == 128:
# schedule Out_L local write
i, oc, h, w = s[Out_L].op.axis
ic, dh, dw = s[Out_L].op.reduce_axis
oic, iic = s[Out_L].split(ic, factor=ifactor)
s[Out_L].reorder(oic, dh, dw, iic, h, w)
s[Out_L].fuse(iic, dw)
dh = s[Out_L].fuse(dh, oic)
s[temp_S].compute_at(s[Out_L], dh)
s[Filter_S].compute_at(s[Out_L], dh)
#schedule temp_S shared mem load
i, ic, h, w = s[temp_S].op.axis
_, iic = s[temp_S].split(ic, factor=sfactor)
_, iw = s[temp_S].split(w, factor=spart)
s[temp_S].bind(iic, thread_x)
s[temp_S].bind(iw, thread_y)
#schedule Filter_S shared mem load
i, oc, h, w = s[Filter_S].op.axis
_, ioc = s[Filter_S].split(oc, factor=sfactor)
_, ii = s[Filter_S].split(i, factor=spart)
s[Filter_S].bind(ioc, thread_x)
s[Filter_S].bind(ii, thread_y)
else:
# schedule Out_L local write
i, oc, h, w = s[Out_L].op.axis
ic, dh, dw = s[Out_L].op.reduce_axis
oic, iic = s[Out_L].split(ic, factor=ifactor)
s[Out_L].reorder(oic, dh, dw, iic, h, w)
# dh = s[Out_L].fuse(dh, oic)
s[temp_S].compute_at(s[Out_L], oic)
s[Filter_S].compute_at(s[Out_L], dw)
#schedule temp_S shared mem load
i, ic, h, w = s[temp_S].op.axis
_, iic = s[temp_S].split(ic, factor=sfactor)
_, iw = s[temp_S].split(w, factor=spart)
s[temp_S].bind(iic, thread_x)
s[temp_S].bind(iw, thread_y)
#schedule Filter_S shared mem load
i, oc, h, w = s[Filter_S].op.axis
_, ioc = s[Filter_S].split(oc, factor=sfactor)
_, ii = s[Filter_S].split(i, factor=spart)
s[Filter_S].bind(ioc, thread_x)
s[Filter_S].bind(ii, thread_y)
def conv2d_14_256_256(s, Filter, temp_S, Filter_S, Out, Out_L):
"""Schedule conv2d for specific feature_in_out_filter pattern"""
# sheduler params
vthread_x = util.get_const_int(Out.shape[3])
num_thread_x = 64
block_x = tvm.thread_axis("blockIdx.x")
thread_x = tvm.thread_axis((0, num_thread_x), "threadIdx.x")
thread_xz = tvm.thread_axis((0, vthread_x), "vthread", name="vx")
if util.get_const_int(Filter.shape[1]) == 256:
# sheduler params
vthread_x = util.get_const_int(Out.shape[3])
num_thread_x = 64
ofactor = 8
if util.get_const_int(Filter.shape[3]) == 1:
ofactor = 64
block_x = tvm.thread_axis("blockIdx.x")
thread_x = tvm.thread_axis((0, num_thread_x), "threadIdx.x")
thread_xz = tvm.thread_axis((0, vthread_x), "vthread", name="vx")
i, oc, h, w = s[Out].op.axis
ooc, ioc = s[Out].split(oc, factor=num_thread_x)
s[Out].reorder(i, ooc, h, w, ioc)
ooc = s[Out].fuse(h, ooc)
s[Out].bind(ioc, thread_x)
s[Out].bind(w, thread_xz)
s[Out].bind(ooc, block_x)
i, oc, h, w = s[Out].op.axis
ooc, ioc = s[Out].split(oc, factor=num_thread_x)
s[Out].reorder(i, ooc, h, w, ioc)
ooc = s[Out].fuse(h, ooc)
s[Out].bind(ioc, thread_x)
s[Out].bind(w, thread_xz)
s[Out].bind(ooc, block_x)
s[Out_L].compute_at(s[Out], ioc)
s[Out_L].compute_at(s[Out], ioc)
# schedule Out_L local write
i, oc, h, w = s[Out_L].op.axis
ic, dh, dw = s[Out_L].op.reduce_axis
oic, iic = s[Out_L].split(ic, factor=8)
s[Out_L].reorder(oic, dh, dw, iic, h, w)
# schedule Out_L local write
i, oc, h, w = s[Out_L].op.axis
ic, dh, dw = s[Out_L].op.reduce_axis
oic, iic = s[Out_L].split(ic, ofactor)
s[Out_L].reorder(oic, dh, dw, iic, h, w)
s[temp_S].compute_at(s[Out_L], oic)
s[Filter_S].compute_at(s[Out_L], oic)
s[temp_S].compute_at(s[Out_L], oic)
s[Filter_S].compute_at(s[Out_L], oic)
#schedule temp_S shared mem load
i, ic, h, w = s[temp_S].op.axis
s[temp_S].reorder(i, ic, w, h)
ic = s[temp_S].fuse(w, ic)
_, iic = s[temp_S].split(ic, factor=num_thread_x)
s[temp_S].bind(iic, thread_x)
#schedule temp_S shared mem load
i, ic, h, w = s[temp_S].op.axis
s[temp_S].reorder(i, ic, w, h)
ic = s[temp_S].fuse(w, ic)
_, iic = s[temp_S].split(ic, factor=num_thread_x)
s[temp_S].bind(iic, thread_x)
#schedule Filter_S shared mem load
i, oc, h, w = s[Filter_S].op.axis
_, ii = s[Filter_S].split(i, factor=num_thread_x)
s[Filter_S].bind(ii, thread_x)
#schedule Filter_S shared mem load
i, oc, h, w = s[Filter_S].op.axis
_, ii = s[Filter_S].split(i, factor=num_thread_x)
s[Filter_S].bind(ii, thread_x)
s[Filter_S].storage_align(s[Filter_S].op.axis[0], 2, 1)
else:
# sheduler params
vthread_x = util.get_const_int(Out.shape[2])
num_thread_x = 16
num_thread_y = util.get_const_int(Out.shape[3])
ofactor = 8
block_x = tvm.thread_axis("blockIdx.x")
thread_x = tvm.thread_axis((0, num_thread_x), "threadIdx.x")
thread_y = tvm.thread_axis((0, num_thread_y), "threadIdx.y")
thread_xz = tvm.thread_axis((0, vthread_x), "vthread", name="vx")
i, oc, h, w = s[Out].op.axis
ooc, ioc = s[Out].split(oc, factor=num_thread_x)
s[Out].reorder(i, ooc, h, w, ioc)
s[Out].bind(ioc, thread_x)
s[Out].bind(w, thread_y)
s[Out].bind(h, thread_xz)
s[Out].bind(ooc, block_x)
s[Out_L].compute_at(s[Out], ioc)
# schedule Out_L local write
i, oc, h, w = s[Out_L].op.axis
ic, dh, dw = s[Out_L].op.reduce_axis
oic, iic = s[Out_L].split(ic, ofactor)
s[Out_L].reorder(oic, dh, dw, iic, h, w)
s[temp_S].compute_at(s[Out_L], oic)
s[Filter_S].compute_at(s[Out_L], oic)
#schedule temp_S shared mem load
i, ic, h, w = s[temp_S].op.axis
ic = s[temp_S].fuse(w, h, ic)
oic, iic = s[temp_S].split(ic, factor=num_thread_x)
_, ioic = s[temp_S].split(oic, factor=num_thread_y)
s[temp_S].bind(iic, thread_x)
s[temp_S].bind(ioic, thread_y)
#schedule Filter_S shared mem load
i, oc, h, w = s[Filter_S].op.axis
_, ii = s[Filter_S].split(i, factor=num_thread_x)
h = s[Filter_S].fuse(h, w)
_, ih = s[Filter_S].split(h, factor=num_thread_y)
s[Filter_S].bind(ii, thread_x)
s[Filter_S].bind(ih, thread_y)
s[Filter_S].storage_align(s[Filter_S].op.axis[0], 2, 1)
def conv2d_56_64_64(s, Filter, temp_S, Filter_S, Out, Out_L):
"""Schedule conv2d for specific feature_in_out_filter pattern"""
@ -255,7 +385,7 @@ def schedule_conv2d_small_batch(outs):
elif 128 < flag < 512:
conv2d_56_64_128(s, temp_S, Filter_S, Out, Out_L, flag)
elif flag >= 512:
conv2d_14_256_256(s, temp_S, Filter_S, Out, Out_L)
conv2d_14_256_256(s, Filter, temp_S, Filter_S, Out, Out_L)
else:
conv2d_56_64_64(s, Filter, temp_S, Filter_S, Out, Out_L)