[TUTORIAL] Resnet-18 end to end tutorial example (#55)

This commit is contained in:
Thierry Moreau 2018-07-03 09:47:31 -07:00 коммит произвёл Tianqi Chen
Родитель 8539ac5810
Коммит ffe1badd9d
1 изменённых файлов: 326 добавлений и 0 удалений

326
vta/tutorials/resnet.py Normal file
Просмотреть файл

@ -0,0 +1,326 @@
"""
ResNet Inference Example
========================
**Author**: `Thierry Moreau <https://homes.cs.washington.edu/~moreau/>`_
This tutorial provides an end-to-end demo, on how to run ResNet-18 inference
onto the VTA accelerator design to perform ImageNet classification tasks.
"""
######################################################################
# Import Libraries
# ----------------
# We start by importing the tvm, vta, nnvm libraries to run this example.
from __future__ import absolute_import, print_function
import os
import sys
import nnvm
import nnvm.compiler
import tvm
import vta
import vta.testing
import numpy as np
import json
import requests
import time
from nnvm.compiler import graph_attr
from tvm.contrib import graph_runtime, rpc, util
from tvm.contrib.download import download
from vta.testing import simulator
from io import BytesIO
from matplotlib import pyplot as plt
from PIL import Image
# Load VTA parameters from the config.json file
env = vta.get_env()
# Helper to crop an image to a square (224, 224)
# Takes in an Image object, returns an Image object
def thumbnailify(image, pad=15):
w, h = image.size
crop = ((w-h)//2+pad, pad, h+(w-h)//2-pad, h-pad)
image = image.crop(crop)
image = image.resize((224, 224))
return image
# Helper function to read in image
# Takes in Image object, returns an ND array
def process_image(image):
# Convert to neural network input format
image = np.array(image) - np.array([123., 117., 104.])
image /= np.array([58.395, 57.12, 57.375])
image = image.transpose((2, 0, 1))
image = image[np.newaxis, :]
return tvm.nd.array(image.astype("float32"))
# Classification helper function
# Takes in the graph runtime, and an image, and returns top result and time
def classify(m, image):
m.set_input('data', image)
timer = m.module.time_evaluator("run", ctx, number=1)
tcost = timer()
tvm_output = m.get_output(0, tvm.nd.empty((1000,), "float32", remote.cpu(0)))
top = np.argmax(tvm_output.asnumpy())
tcost = "t={0:.2f}s".format(tcost.mean)
return tcost + " {}".format(synset[top])
# Helper function to compile the NNVM graph
# Takes in a path to a graph file, params file, and device target
# Returns the NNVM graph object, a compiled library object, and the params dict
def generate_graph(graph_fn, params_fn, device="vta"):
# Measure build start time
build_start = time.time()
# Derive the TVM target
target = tvm.target.create("llvm -device={}".format(device))
# Derive the LLVM compiler flags
# When targetting the Pynq, cross-compile to ARMv7 ISA
if env.TARGET == "sim":
target_host = "llvm"
elif env.TARGET == "pynq":
target_host = "llvm -mtriple=armv7-none-linux-gnueabihf -mcpu=cortex-a9 -mattr=+neon"
# Load the ResNet-18 graph and parameters
sym = nnvm.graph.load_json(open(graph_fn).read())
params = nnvm.compiler.load_param_dict(open(params_fn, 'rb').read())
# Populate the shape and data type dictionary
shape_dict = {"data": (1, 3, 224, 224)}
dtype_dict = {"data": 'float32'}
shape_dict.update({k: v.shape for k, v in params.items()})
dtype_dict.update({k: str(v.dtype) for k, v in params.items()})
# Create NNVM graph
graph = nnvm.graph.create(sym)
graph_attr.set_shape_inputs(sym, shape_dict)
graph_attr.set_dtype_inputs(sym, dtype_dict)
graph = graph.apply("InferShape").apply("InferType")
# Apply NNVM graph optimization passes
sym = vta.graph.clean_cast(sym)
sym = vta.graph.clean_conv_fuse(sym)
if target.device_name == "vta":
assert env.BLOCK_IN == env.BLOCK_OUT
sym = vta.graph.pack(sym, shape_dict, env.BATCH, env.BLOCK_OUT)
# Compile NNVM graph
with nnvm.compiler.build_config(opt_level=3):
if target.device_name != "vta":
graph, lib, params = nnvm.compiler.build(
sym, target_host, shape_dict, dtype_dict,
params=params)
else:
with vta.build_config():
graph, lib, params = nnvm.compiler.build(
sym, target, shape_dict, dtype_dict,
params=params, target_host=target_host)
# Save the compiled inference graph library
assert tvm.module.enabled("rpc")
temp = util.tempdir()
lib.save(temp.relpath("graphlib.o"))
# Send the inference library over to the remote RPC server
remote.upload(temp.relpath("graphlib.o"))
lib = remote.load_module("graphlib.o")
# Measure build time
build_time = time.time() - build_start
print("ResNet-18 inference graph built in {0:.2f}s!".format(build_time))
return graph, lib, params
######################################################################
# Download ResNet Model
# --------------------------------------------
# Download the necessary files to run ResNet-18.
#
# Obtain ResNet model and download them into _data dir
url = "https://github.com/uwsaml/web-data/raw/master/vta/models/"
categ_fn = 'synset.txt'
graph_fn = 'resnet18_qt8.json'
params_fn = 'resnet18_qt8.params'
# Create data dir
data_dir = "_data/"
if not os.path.exists(data_dir):
os.makedirs(data_dir)
# Download files
for file in [categ_fn, graph_fn, params_fn]:
if not os.path.isfile(file):
download(os.path.join(url, file), os.path.join(data_dir, file))
# Read in ImageNet Categories
synset = eval(open(os.path.join(data_dir, categ_fn)).read())
######################################################################
# Setup the Pynq Board's RPC Server
# ---------------------------------
# Build the RPC server's VTA runtime and program the Pynq FPGA.
# Measure build start time
reconfig_start = time.time()
# We read the Pynq RPC host IP address and port number from the OS environment
host = os.environ.get("VTA_PYNQ_RPC_HOST", "192.168.2.99")
port = int(os.environ.get("VTA_PYNQ_RPC_PORT", "9091"))
# We configure both the bitstream and the runtime system on the Pynq
# to match the VTA configuration specified by the config.json file.
if env.TARGET == "pynq":
# Make sure that TVM was compiled with RPC=1
assert tvm.module.enabled("rpc")
remote = rpc.connect(host, port)
# Reconfigure the JIT runtime
vta.reconfig_runtime(remote)
# Program the FPGA with a pre-compiled VTA bitstream.
# You can program the FPGA with your own custom bitstream
# by passing the path to the bitstream file instead of None.
vta.program_fpga(remote, bitstream=None)
# Report on reconfiguration time
reconfig_time = time.time() - reconfig_start
print("Reconfigured FPGA and RPC runtime in {0:.2f}s!".format(reconfig_time))
# In simulation mode, host the RPC server locally.
elif env.TARGET == "sim":
remote = rpc.LocalSession()
######################################################################
# Build the ResNet Runtime
# ------------------------
# Build the ResNet graph runtime, and configure the parameters.
# Set ``device=cpu`` to run inference on the CPU,
# or ``device=vtacpu`` to run inference on the FPGA.
device = "vta"
# Device context
ctx = remote.ext_dev(0) if device == "vta" else remote.cpu(0)
# Build the graph runtime
graph, lib, params = generate_graph(os.path.join(data_dir, graph_fn),
os.path.join(data_dir, params_fn),
device)
m = graph_runtime.create(graph, lib, ctx)
# Set the parameters
m.set_input(**params)
######################################################################
# Run ResNet-18 inference on a sample image
# -----------------------------------------
# Perform image classification on test image.
# You can change the test image URL to any image of your choosing.
# Read in test image
image_url = 'https://homes.cs.washington.edu/~moreau/media/vta/cat.jpg'
# Read in test image
response = requests.get(image_url)
image = Image.open(BytesIO(response.content)).resize((224, 224))
# Show Image
plt.imshow(image)
plt.show()
# Set the input
image = process_image(image)
m.set_input('data', image)
# Perform inference
timer = m.module.time_evaluator("run", ctx, number=1)
tcost = timer()
# Get classification results
tvm_output = m.get_output(0, tvm.nd.empty((1000,), "float32", remote.cpu(0)))
top_categories = np.argsort(tvm_output.asnumpy())
# Report top-5 classification results
print("ResNet-18 Prediction #1:", synset[top_categories[-1]])
print(" #2:", synset[top_categories[-2]])
print(" #3:", synset[top_categories[-3]])
print(" #4:", synset[top_categories[-4]])
print(" #5:", synset[top_categories[-5]])
print("Performed inference in {0:.2f}s".format(tcost.mean))
######################################################################
# Run a Youtube Video Image Classifier
# ------------------------------------
# Perform image classification on test stream on 1 frame every 48 frames.
# Comment the `if False:` out to run the demo
# Early exit - remove for Demo
if False:
import cv2
import pafy
from IPython.display import clear_output
# Helper to crop an image to a square (224, 224)
# Takes in an Image object, returns an Image object
def thumbnailify(image, pad=15):
w, h = image.size
crop = ((w-h)//2+pad, pad, h+(w-h)//2-pad, h-pad)
image = image.crop(crop)
image = image.resize((224, 224))
return image
# 16:16 inches
plt.rcParams['figure.figsize'] = [16, 16]
# Stream the video in
url = "https://www.youtube.com/watch?v=PJlmYh27MHg&t=2s"
video = pafy.new(url)
best = video.getbest(preftype="mp4")
cap = cv2.VideoCapture(best.url)
# Process one frame out of every 48 for variety
count = 0
guess = ""
while(count<2400):
# Capture frame-by-frame
ret, frame = cap.read()
# Process one every 48 frames
if count % 48 == 1:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
# Crop and resize
thumb = np.array(thumbnailify(frame))
image = process_image(thumb)
guess = classify(m, image)
# Insert guess in frame
frame = cv2.rectangle(thumb,(0,0),(200,0),(0,0,0),50)
cv2.putText(frame, guess, (5,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (256,256,256), 1, cv2.LINE_AA)
plt.imshow(thumb)
plt.axis('off')
plt.show()
if cv2.waitKey(1) & 0xFF == ord('q'):
break
clear_output(wait=True)
count += 1
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()