onnxruntime-tvm/include/tvm/relay/pass.h

200 строки
5.8 KiB
C++

/*!
* Copyright (c) 2018 by Contributors
* \file tvm/relay/pass.h
* \brief The set of Relay passes written in C++.
*/
#ifndef TVM_RELAY_PASS_H_
#define TVM_RELAY_PASS_H_
#include <tvm/relay/module.h>
#include <tvm/relay/expr.h>
#include <string>
namespace tvm {
namespace relay {
/*!
* \brief Infer the type of an expression.
*
* The result of type checking is a new expression with unambigous
* type information filled in, as well as it's checked type field
* populated with the result type.
*
* \param expr The expression to type check.
* \param mod The module used for referencing global functions, can be
* None.
*
* \return A type checked expression with its checked_type field populated.
*/
Expr InferType(const Expr& expr, const Module& mod);
/*!
* \brief Infer the type of a function as if it is mapped to var in the mod.
*
* \param f the function.
* \param mod The module used for referencing global functions.
* \param var The global variable corresponding to the function.
*
* \return A type checked Function with its checked_type field populated.
* \note this function mutates mod and is not thread-safe.
*/
Function InferType(const Function& f, const Module& mod,
const GlobalVar& var);
/*!
* \brief Check that types are well kinded by applying "kinding rules".
*
* This pass ensures we do not do things that violate the design of the
* type system when writing down types.
*
* For example tensors are not allowed to contain functions in Relay.
*
* We check this by ensuring the `dtype` field of a Tensor always contains
* a data type such as `int`, `float`, `uint`.
*
* \param t The type to check.
* \param mod The global module.
*
* \return true if the rules are satisified otherwise false
*/
bool KindCheck(const Type& t, const Module& mod);
/*! \brief Compare two expressions for structural equivalence.
*
* This comparison operator respects scoping and compares
* expressions without regard to variable choice.
*
* For example: `let x = 1 in x` is equal to `let y = 1 in y`.
*
* See https://en.wikipedia.org/wiki/Lambda_calculus#Alpha_equivalence
* for more details.
*
* \param e1 The left hand expression.
* \param e2 The right hand expression.
*
* \return true if equal, otherwise false
*/
bool AlphaEqual(const Expr& e1, const Expr& e2);
/*! \brief Compare two types for structural equivalence.
*
* This comparison operator respects scoping and compares
* expressions without regard to variable choice.
*
* For example: `forall s, Tensor[f32, s]` is equal to
* `forall w, Tensor[f32, w]`.
*
* See https://en.wikipedia.org/wiki/Lambda_calculus#Alpha_equivalence
* for more details.
*
* \param t1 The left hand type.
* \param t2 The right hand type.
*
* \return true if equal, otherwise false
*/
bool AlphaEqual(const Type& t1, const Type& t2);
/*! \brief Check that each Var is only bound once.
*
* For example, the expression `let x = 1 in let x = 2 in 3` bound x twice.
*
* `let f = (\x -> x) in let g = (\x -> x + 1) in f(g(2))` also bound x twice,
* although x is not shadowed.
*
* \param expr the expression to check.
*
* \return true iff all Var in expr is bound at most once.
*/
bool WellFormed(const Expr& expr);
/*! \brief Get free type parameters from expression expr.
*
* Free variables are variables that are not bound by a
* let or a function parameter in the context.
*
* \param expr the expression.
*
* \return List of free vars, in the PostDFS order in the expression.
*/
tvm::Array<Var> FreeVars(const Expr& expr);
/*! \brief Get free TypeVars from expression expr.
*
* Free type parameters are type parameters that are not bound by a function
* type in the context.
*
* \param expr the expression.
*
* \return List of free vars, in the PostDFS order visited by expr.
*/
tvm::Array<TypeVar> FreeTypeVars(const Expr& expr);
/*! \brief Remove expressions which does not effect the program result.
*
* It will remove let bindings which are not referenced, and branches that will
* not be entered.
*
* For example, this pass should turn `let a = 1 in 2` into `2`, as the value of
* the expression does not depend on a. Another example is `if (true) then 1
* else 2` will be optimized into 1.
*
* \param e the expression to optimize.
*
* \return the optimized expression.
*/
Expr DeadCodeElimination(const Expr& e);
/*!
* \brief Fold constant expressions.
* \param expr the expression to be optimized.
* \return The optimized expression.
*/
Expr FoldConstant(const Expr& expr);
/*!
* \brief Fuse operations into expr into seperate functions.
* \param expr The expression.
* \param fuse_opt_level Optimization level.
* \return The optimized expression.
*/
Expr FuseOps(const Expr& expr, int fuse_opt_level);
/*!
* \brief Apply rewrite rules to rewrite the expr in post DFS order.
* \param expr The expression.
* \param rewrite_map_attr_name The Op's attr name which corresponds to the rewrite
* rule function.
* \param fcontext Additional callback to provide context argument for each call node.
* \return The rewritten expression.
*/
Expr ForwardRewrite(const Expr& expr,
const std::string& rewrite_map_attr_name,
std::function<NodeRef(const Call&)> fcontext = nullptr);
/*! \brief A hashing structure in the style of std::hash. */
struct StructuralHash {
/*! \brief Hash a Relay type.
*
* Implements structural hashing of a Relay type.
*
* \param type the type to hash.
*
* \return the hash value.
*/
size_t operator()(const Type& type) const;
/*! \brief Hash a Relay expression.
*
* Implements structural hashing of a Relay expression.
*
* \param expr the expression to hash.
*
* \return the hash value.
*/
size_t operator()(const Expr& expr) const;
};
} // namespace relay
} // namespace tvm
#endif // TVM_RELAY_PASS_H_