onnxruntime-tvm/python/tvm/relay/testing/inception_v3.py

301 строка
13 KiB
Python

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Inception V3, suitable for images with around 299 x 299
Reference:
Szegedy, Christian, et al. "Rethinking the Inception Architecture for Computer Vision."
arXiv preprint arXiv:1512.00567 (2015).
Adopted from https://github.com/apache/incubator-mxnet/blob/
master/example/image-classification/symbols/inception-v3.py
"""
# pylint: disable=invalid-name,missing-docstring,unused-argument
from tvm import relay
from .init import create_workload
from . import layers
def Conv(data, num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), name=None, suffix=''):
conv = layers.conv2d(
data=data,
channels=int(num_filter),
kernel_size=kernel,
strides=stride,
padding=pad,
name='%s%s_conv1' % (name, suffix))
bn = layers.batch_norm_infer(data=conv, epsilon=2e-5, scale=False,
name='%s%s_bn' % (name, suffix))
act = relay.nn.relu(data=bn)
return act
def Pooling(data, kernel, stride, pad, pool_type, name):
if pool_type == 'max':
return relay.nn.max_pool2d(data=data, pool_size=kernel, strides=stride, padding=pad)
if pool_type == 'avg':
return relay.nn.avg_pool2d(data=data, pool_size=kernel, strides=stride, padding=pad,
count_include_pad=True)
raise ValueError("Invalid pooling type: " + pool_type)
def Inception7A(data,
num_1x1,
num_3x3_red, num_3x3_1, num_3x3_2,
num_5x5_red, num_5x5,
pool, proj,
name):
tower_1x1 = Conv(data, num_1x1, name=('%s_conv' % name))
tower_5x5 = Conv(data, num_5x5_red, name=('%s_tower' % name), suffix='_conv')
tower_5x5 = Conv(tower_5x5, num_5x5, kernel=(5, 5), pad=(2, 2), name=('%s_tower' % name),
suffix='_conv_1')
tower_3x3 = Conv(data, num_3x3_red, name=('%s_tower_1' % name), suffix='_conv')
tower_3x3 = Conv(tower_3x3, num_3x3_1, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name),
suffix='_conv_1')
tower_3x3 = Conv(tower_3x3, num_3x3_2, kernel=(3, 3), pad=(1, 1), name=('%s_tower_1' % name),
suffix='_conv_2')
pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool,
name=('%s_pool_%s_pool' % (pool, name)))
cproj = Conv(pooling, proj, name=('%s_tower_2' % name), suffix='_conv')
concat = relay.concatenate((tower_1x1, tower_5x5, tower_3x3, cproj), axis=1)
return concat
# First Downsample
def Inception7B(data,
num_3x3,
num_d3x3_red, num_d3x3_1, num_d3x3_2,
pool,
name):
tower_3x3 = Conv(data, num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2),
name=('%s_conv' % name))
tower_d3x3 = Conv(data, num_d3x3_red, name=('%s_tower' % name), suffix='_conv')
tower_d3x3 = Conv(tower_d3x3, num_d3x3_1, kernel=(3, 3), pad=(1, 1), stride=(1, 1),
name=('%s_tower' % name), suffix='_conv_1')
tower_d3x3 = Conv(tower_d3x3, num_d3x3_2, kernel=(3, 3), pad=(0, 0), stride=(2, 2),
name=('%s_tower' % name), suffix='_conv_2')
pooling = Pooling(data=data, kernel=(3, 3), stride=(2, 2), pad=(0, 0), pool_type="max",
name=('max_pool_%s_pool' % name))
concat = relay.concatenate((tower_3x3, tower_d3x3, pooling), axis=1)
return concat
def Inception7C(data,
num_1x1,
num_d7_red, num_d7_1, num_d7_2,
num_q7_red, num_q7_1, num_q7_2, num_q7_3, num_q7_4,
pool, proj,
name):
tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_conv' % name))
tower_d7 = Conv(data=data, num_filter=num_d7_red, name=('%s_tower' % name), suffix='_conv')
tower_d7 = Conv(data=tower_d7, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3),
name=('%s_tower' % name), suffix='_conv_1')
tower_d7 = Conv(data=tower_d7, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0),
name=('%s_tower' % name), suffix='_conv_2')
tower_q7 = Conv(data=data, num_filter=num_q7_red, name=('%s_tower_1' % name), suffix='_conv')
tower_q7 = Conv(data=tower_q7, num_filter=num_q7_1, kernel=(7, 1), pad=(3, 0),
name=('%s_tower_1' % name), suffix='_conv_1')
tower_q7 = Conv(data=tower_q7, num_filter=num_q7_2, kernel=(1, 7), pad=(0, 3),
name=('%s_tower_1' % name), suffix='_conv_2')
tower_q7 = Conv(data=tower_q7, num_filter=num_q7_3, kernel=(7, 1), pad=(3, 0),
name=('%s_tower_1' % name), suffix='_conv_3')
tower_q7 = Conv(data=tower_q7, num_filter=num_q7_4, kernel=(1, 7), pad=(0, 3),
name=('%s_tower_1' % name), suffix='_conv_4')
pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool,
name=('%s_pool_%s_pool' % (pool, name)))
cproj = Conv(data=pooling, num_filter=proj, kernel=(1, 1),
name=('%s_tower_2' % name), suffix='_conv')
# concat
concat = relay.concatenate((tower_1x1, tower_d7, tower_q7, cproj), axis=1)
return concat
def Inception7D(data,
num_3x3_red, num_3x3,
num_d7_3x3_red, num_d7_1, num_d7_2, num_d7_3x3,
pool,
name):
tower_3x3 = Conv(data=data, num_filter=num_3x3_red, name=('%s_tower' % name),
suffix='_conv')
tower_3x3 = Conv(data=tower_3x3, num_filter=num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2),
name=('%s_tower' % name), suffix='_conv_1')
tower_d7_3x3 = Conv(data=data, num_filter=num_d7_3x3_red, name=('%s_tower_1' % name),
suffix='_conv')
tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3),
name=('%s_tower_1' % name), suffix='_conv_1')
tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0),
name=('%s_tower_1' % name), suffix='_conv_2')
tower_d7_3x3 = Conv(data=tower_d7_3x3, num_filter=num_d7_3x3, kernel=(3, 3), stride=(2, 2),
name=('%s_tower_1' % name), suffix='_conv_3')
pooling = Pooling(data=data, kernel=(3, 3), stride=(2, 2), pool_type=pool, pad=(0, 0),
name=('%s_pool_%s_pool' % (pool, name)))
# concat
concat = relay.concatenate((tower_3x3, tower_d7_3x3, pooling), axis=1)
return concat
def Inception7E(data,
num_1x1,
num_d3_red, num_d3_1, num_d3_2,
num_3x3_d3_red, num_3x3, num_3x3_d3_1, num_3x3_d3_2,
pool, proj,
name):
tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=('%s_conv' % name))
tower_d3 = Conv(data=data, num_filter=num_d3_red, name=('%s_tower' % name), suffix='_conv')
tower_d3_a = Conv(data=tower_d3, num_filter=num_d3_1, kernel=(1, 3), pad=(0, 1),
name=('%s_tower' % name), suffix='_mixed_conv')
tower_d3_b = Conv(data=tower_d3, num_filter=num_d3_2, kernel=(3, 1), pad=(1, 0),
name=('%s_tower' % name), suffix='_mixed_conv_1')
tower_3x3_d3 = Conv(data=data, num_filter=num_3x3_d3_red, name=('%s_tower_1' % name),
suffix='_conv')
tower_3x3_d3 = Conv(data=tower_3x3_d3, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1),
name=('%s_tower_1' % name), suffix='_conv_1')
tower_3x3_d3_a = Conv(data=tower_3x3_d3, num_filter=num_3x3_d3_1, kernel=(1, 3), pad=(0, 1),
name=('%s_tower_1' % name), suffix='_mixed_conv')
tower_3x3_d3_b = Conv(data=tower_3x3_d3, num_filter=num_3x3_d3_2, kernel=(3, 1), pad=(1, 0),
name=('%s_tower_1' % name), suffix='_mixed_conv_1')
pooling = Pooling(data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool,
name=('%s_pool_%s_pool' % (pool, name)))
cproj = Conv(data=pooling, num_filter=proj, kernel=(1, 1), name=('%s_tower_2' % name),
suffix='_conv')
# concat
concat = relay.concatenate(
(tower_1x1, tower_d3_a, tower_d3_b, tower_3x3_d3_a, tower_3x3_d3_b, cproj), axis=1)
return concat
def get_net(batch_size,
num_classes,
image_shape,
dtype):
"""Get network a Inception v3 network.
batch_size : int
The batch size used in the model
num_classes : int, optional
Number of claseses
image_shape : tuple, optional
The input image shape
dtype : str, optional
The data type
Returns
-------
net : relay.Function
The dataflow.
"""
data_shape = (batch_size,) + image_shape
data = relay.var("data",
shape=data_shape,
dtype=dtype)
# stage 1
conv = Conv(data, 32, kernel=(3, 3), stride=(2, 2), name="conv")
conv_1 = Conv(conv, 32, kernel=(3, 3), name="conv_1")
conv_2 = Conv(conv_1, 64, kernel=(3, 3), pad=(1, 1), name="conv_2")
pool = Pooling(data=conv_2, kernel=(3, 3), stride=(2, 2), pool_type="max", pad=(0, 0),
name="pool")
# stage 2
conv_3 = Conv(pool, 80, kernel=(1, 1), name="conv_3")
conv_4 = Conv(conv_3, 192, kernel=(3, 3), name="conv_4")
pool1 = Pooling(data=conv_4, kernel=(3, 3), stride=(2, 2), pool_type="max", pad=(0, 0),
name="pool1")
# stage 3
in3a = Inception7A(pool1, 64,
64, 96, 96,
48, 64,
"avg", 32, "mixed")
in3b = Inception7A(in3a, 64,
64, 96, 96,
48, 64,
"avg", 64, "mixed_1")
in3c = Inception7A(in3b, 64,
64, 96, 96,
48, 64,
"avg", 64, "mixed_2")
in3d = Inception7B(in3c, 384,
64, 96, 96,
"max", "mixed_3")
# stage 4
in4a = Inception7C(in3d, 192,
128, 128, 192,
128, 128, 128, 128, 192,
"avg", 192, "mixed_4")
in4b = Inception7C(in4a, 192,
160, 160, 192,
160, 160, 160, 160, 192,
"avg", 192, "mixed_5")
in4c = Inception7C(in4b, 192,
160, 160, 192,
160, 160, 160, 160, 192,
"avg", 192, "mixed_6")
in4d = Inception7C(in4c, 192,
192, 192, 192,
192, 192, 192, 192, 192,
"avg", 192, "mixed_7")
in4e = Inception7D(in4d, 192, 320,
192, 192, 192, 192,
"max", "mixed_8")
# stage 5
in5a = Inception7E(in4e, 320,
384, 384, 384,
448, 384, 384, 384,
"avg", 192, "mixed_9")
in5b = Inception7E(in5a, 320,
384, 384, 384,
448, 384, 384, 384,
"max", 192, "mixed_10")
# pool
pool = Pooling(data=in5b, kernel=(8, 8), stride=(1, 1), pool_type="avg", pad=(0, 0),
name="global_pool")
flatten = relay.nn.batch_flatten(pool)
fc1 = relay.nn.dense(flatten, relay.var("fc1_weight"), units=num_classes)
fc1 = relay.nn.bias_add(fc1, relay.var("fc2_bias"), axis=-1)
inception_v3 = relay.nn.softmax(data=fc1)
args = relay.analysis.free_vars(inception_v3)
return relay.Function(args, inception_v3)
def get_workload(batch_size=1, num_classes=1000,
image_shape=(3, 299, 299), dtype="float32"):
"""Get benchmark workload for InceptionV3
Parameters
----------
batch_size : int
The batch size used in the model
num_classes : int, optional
Number of classes
image_shape : tuple, optional
The input image shape
dtype : str, optional
The data type
Returns
-------
mod : tvm.relay.Module
The relay module that contains an Inception V3 network.
params : dict of str to NDArray
The parameters.
"""
net = get_net(batch_size, num_classes, image_shape, dtype)
return create_workload(net)