onnxruntime-tvm/include/tvm/operation.h

469 строки
16 KiB
C++

/*!
* Copyright (c) 2016 by Contributors
* \file operation.h
* \brief Operation node can generate one or multiple Tensors
*/
#ifndef TVM_OPERATION_H_
#define TVM_OPERATION_H_
#include <string>
#include <vector>
#include <unordered_map>
#include "./expr.h"
#include "./ir_operator.h"
#include "./tensor.h"
#include "./schedule.h"
#include "./arithmetic.h"
#include "./buffer.h"
namespace tvm {
using arith::IntSet;
/*!
* \brief Temporary data structure to store union
* of bounds of each axis of Tensor.
*/
struct TensorDom {
// constructor
explicit TensorDom(int ndim)
: data(ndim) {}
/*! \brief The domain data */
std::vector<std::vector<IntSet> > data;
};
/*!
* \brief Base class of all operation nodes
*/
class OperationNode : public FunctionBaseNode {
public:
/*! \brief optional name of the operation */
std::string name;
/*! \brief optional tag of the operation */
std::string tag;
/*! \return name of the operation */
const std::string& func_name() const final {
return name;
}
/*!
* \return The list of iteration variable at root
* \note root_iter_vars dedides the shape of the outputs.
*/
virtual Array<IterVar> root_iter_vars() const = 0;
/*!
* \brief Get data type. i-th output tensor.
* \param i The output index.
* \return type of i-th output.
*/
virtual Type output_dtype(size_t i) const = 0;
/*!
* \brief Get shape of i-th output tensor.
* \param i The output index.
* \return shape of i-th output.
*/
virtual Array<Expr> output_shape(size_t i) const = 0;
/*!
* \brief List all the input Tensors.
* \return List of input tensors.
*/
virtual Array<Tensor> InputTensors() const = 0;
/*!
* \brief Replace the input of the operation by pattern specified by rmap.
*
* \param self The reference to self.
* \param rmap The replacement map.
* \return self if nothing is replaced, otherwise return replaced op.
*/
virtual Operation ReplaceInputs(
const Operation& self,
const std::unordered_map<Tensor, Tensor>& rmap) const = 0;
/*!
* \brief Propagate the bounds to inputs
* \param self The reference to self.
* \param dom_map the domain map of Variables(corresponds to root_iter_vars)
* \param out_dom_map The output domain.
* The function is only asked to fill the bounds for Tensors that
* is already in the out_dom_map
*/
virtual void PropBoundToInputs(
const Operation& self,
const std::unordered_map<const Variable*, IntSet>& dom_map,
std::unordered_map<Tensor, TensorDom>* out_dom_map) const = 0;
/*!
* \brief Gather the bound from output tensor.
* Set the range of each root_iter_vars in the op to out_dom_map
*
* \param self The reference to self.
* \param tensor_dom Domain map of Tensor->access set of each dimension.
* \param out_dom_map The output domain map of each IterVar to be setted.
*/
virtual void GatherBound(
const Operation& self,
const std::unordered_map<Tensor, TensorDom>& tensor_dom,
std::unordered_map<IterVar, Range>* out_dom_map) const = 0;
/*!
* \brief Build the Realize statement that realizes
* the op's output tensors.
* \param stage the op's stage.
* \param realize_map The realization domain map of the operators.
* \param body The body that is going to get
* \return A realization statement that wraps body.
*/
virtual Stmt BuildRealize(
const Stage& stage,
const std::unordered_map<IterVar, Range>& realize_map,
const Stmt& body) const = 0;
/*!
* \brief Build the statement that provide the output tensors.
* \param stage The schedule stage of the op.
* \param dom_map The domain map of all iteration domains.
* \param debug_keep_trivial_loop Whether keep trivial loops with extent of 1
* \return A statement that add production and wraps consumer.
*/
virtual Stmt BuildProvide(
const Stage& stage,
const std::unordered_map<IterVar, Range>& dom_map,
bool debug_keep_trivial_loop) const = 0;
static constexpr const char* _type_key = "Operation";
TVM_DECLARE_BASE_NODE_INFO(OperationNode, Node);
};
/*!
* \brief A placeholder op represents an input placeholder.
*/
class PlaceholderOpNode : public OperationNode {
public:
/*! \brief The shape of the input */
Array<Expr> shape;
/*! \brief The data type of the input. */
Type dtype;
// override behavior.
int num_outputs() const final;
Array<IterVar> root_iter_vars() const final;
Type output_dtype(size_t i) const final;
Array<Expr> output_shape(size_t i) const final;
Array<Tensor> InputTensors() const final;
Operation ReplaceInputs(
const Operation& self,
const std::unordered_map<Tensor, Tensor>& rmap) const final;
void PropBoundToInputs(
const Operation& self,
const std::unordered_map<const Variable*, IntSet>& dom_map,
std::unordered_map<Tensor, TensorDom>* out_dom_map) const final;
void GatherBound(
const Operation& self,
const std::unordered_map<Tensor, TensorDom>& tensor_dom,
std::unordered_map<IterVar, Range>* out_dom_map) const final;
Stmt BuildRealize(
const Stage& stage,
const std::unordered_map<IterVar, Range>& realize_map,
const Stmt& body) const final;
Stmt BuildProvide(
const Stage& stage,
const std::unordered_map<IterVar, Range>& dom_map,
bool debug_keep_trivial_loop) const final;
void VisitAttrs(AttrVisitor* v) final {
v->Visit("name", &name);
v->Visit("shape", &shape);
v->Visit("dtype", &dtype);
}
static Operation make(std::string name,
Array<Expr> shape,
Type dtype);
static constexpr const char* _type_key = "PlaceholderOp";
TVM_DECLARE_NODE_TYPE_INFO(PlaceholderOpNode, OperationNode);
};
/*!
* \brief A Compute op that compute a tensor on certain domain.
*/
class TVM_DLL ComputeOpNode : public OperationNode {
public:
/*! \brief IterVar on each axis */
Array<IterVar> axis;
/*! \brief IterVar on each reduction axis, if the body is a Reduce */
Array<IterVar> reduce_axis;
/*! \brief the compute expression */
Array<Expr> body;
/*! \brief constructor */
ComputeOpNode() {}
// override functions
int num_outputs() const final;
Array<IterVar> root_iter_vars() const final;
Type output_dtype(size_t i) const final;
Array<Expr> output_shape(size_t i) const final;
Array<Tensor> InputTensors() const final;
Operation ReplaceInputs(
const Operation& self,
const std::unordered_map<Tensor, Tensor>& rmap) const final;
void PropBoundToInputs(
const Operation& self,
const std::unordered_map<const Variable*, IntSet>& dom_map,
std::unordered_map<Tensor, TensorDom>* out_dom_map) const final;
void GatherBound(
const Operation& self,
const std::unordered_map<Tensor, TensorDom>& tensor_dom,
std::unordered_map<IterVar, Range>* out_dom_map) const final;
Stmt BuildRealize(
const Stage& stage,
const std::unordered_map<IterVar, Range>& realize_map,
const Stmt& body) const final;
Stmt BuildProvide(
const Stage& stage,
const std::unordered_map<IterVar, Range>& dom_map,
bool debug_keep_trivial_loop) const final;
void VisitAttrs(AttrVisitor* v) final {
v->Visit("name", &name);
v->Visit("tag", &tag);
v->Visit("axis", &axis);
v->Visit("reduce_axis", &reduce_axis);
v->Visit("body", &body);
}
static Operation make(std::string name,
std::string tag,
Array<IterVar> axis,
Array<Expr> body);
static constexpr const char* _type_key = "ComputeOp";
TVM_DECLARE_NODE_TYPE_INFO(ComputeOpNode, OperationNode);
};
/*!
* \brief Symbolic scan.
*/
class ScanOpNode : public OperationNode {
public:
/*! \brief IterVar to scan over */
IterVar scan_axis;
/*! \brief the initialization tensors */
Array<Tensor> init;
/*! \brief the update function represented by tensor */
Array<Tensor> update;
/*! \brief The placeholder to refer as states in update. */
Array<Tensor> state_placeholder;
/*!
* \brief the inputs to the scan, these are optionally provided
* But they can be helpful to provide hints to speedup get of scan body.
*/
Array<Tensor> inputs;
/*!
* \brief Spatial axis to indicate spatial dimension of each output.
* They corresponds to flattened spatial axis of the outputs.
*
* [output[0].axis[1], output[0].axis[2]... output[k].axis[j]...]
* These are auxiliary data structure for storing result of bound inference.
* They do not corresponds to splittable iterations, thus the name comes
* with underscore.
*/
Array<IterVar> spatial_axis_;
/*! \brief constructor */
ScanOpNode() {}
// override behavior.
int num_outputs() const final;
Array<IterVar> root_iter_vars() const final;
Type output_dtype(size_t i) const final;
Array<Expr> output_shape(size_t i) const final;
Array<Tensor> InputTensors() const final;
Operation ReplaceInputs(
const Operation& self,
const std::unordered_map<Tensor, Tensor>& rmap) const final;
void PropBoundToInputs(
const Operation& self,
const std::unordered_map<const Variable*, IntSet>& dom_map,
std::unordered_map<Tensor, TensorDom>* out_dom_map) const final;
void GatherBound(
const Operation& self,
const std::unordered_map<Tensor, TensorDom>& tensor_dom,
std::unordered_map<IterVar, Range>* out_dom_map) const final;
Stmt BuildRealize(
const Stage& stage,
const std::unordered_map<IterVar, Range>& realize_map,
const Stmt& body) const final;
Stmt BuildProvide(
const Stage& stage,
const std::unordered_map<IterVar, Range>& dom_map,
bool debug_keep_trivial_loop) const final;
void VisitAttrs(AttrVisitor* v) final {
v->Visit("name", &name);
v->Visit("tag", &tag);
v->Visit("scan_axis", &scan_axis);
v->Visit("init", &init);
v->Visit("update", &update);
v->Visit("state_placeholder", &state_placeholder);
v->Visit("inputs", &inputs);
v->Visit("spatial_axis_", &spatial_axis_);
}
static Operation make(std::string name,
std::string tag,
IterVar axis,
Array<Tensor> init,
Array<Tensor> update,
Array<Tensor> state_placeholder,
Array<Tensor> input);
static constexpr const char* _type_key = "ScanOp";
TVM_DECLARE_NODE_TYPE_INFO(ScanOpNode, OperationNode);
};
/*!
* \brief External computation that cannot be splitted.
*/
class ExternOpNode : public OperationNode {
public:
/*! \brief The input tensors */
Array<Tensor> inputs;
/*! \brief Symbolic placeholder representationinputs */
Array<Buffer> input_placeholders;
/*! \brief Symbolic placeholder representation of outputs */
Array<Buffer> output_placeholders;
/*! \brief the statement that generates the computation. */
Stmt body;
/*! \brief constructor */
ExternOpNode() {}
// override functions
int num_outputs() const final;
Array<IterVar> root_iter_vars() const final;
Type output_dtype(size_t i) const final;
Array<Expr> output_shape(size_t i) const final;
Array<Tensor> InputTensors() const final;
Operation ReplaceInputs(
const Operation& self,
const std::unordered_map<Tensor, Tensor>& rmap) const final;
void PropBoundToInputs(
const Operation& self,
const std::unordered_map<const Variable*, IntSet>& dom_map,
std::unordered_map<Tensor, TensorDom>* out_dom_map) const final;
void GatherBound(
const Operation& self,
const std::unordered_map<Tensor, TensorDom>& tensor_dom,
std::unordered_map<IterVar, Range>* out_dom_map) const final;
Stmt BuildRealize(
const Stage& stage,
const std::unordered_map<IterVar, Range>& realize_map,
const Stmt& body) const final;
Stmt BuildProvide(
const Stage& stage,
const std::unordered_map<IterVar, Range>& dom_map,
bool debug_keep_trivial_loop) const final;
void VisitAttrs(AttrVisitor* v) final {
v->Visit("name", &name);
v->Visit("tag", &tag);
v->Visit("inputs", &inputs);
v->Visit("body", &body);
}
EXPORT static Operation make(std::string name,
std::string tag,
Array<Tensor> inputs,
Array<Buffer> input_placeholders,
Array<Buffer> output_placeholders,
Stmt body);
static constexpr const char* _type_key = "ExternOp";
TVM_DECLARE_NODE_TYPE_INFO(ExternOpNode, OperationNode);
};
/*! \brief The compute function to specify the input source of a Tensor */
using FCompute = std::function<Expr (const Array<Var>& i)>;
/*! \brief The compute function to specify the inputs source of Tensors */
using FBatchCompute = std::function<Array<Expr> (const Array<Var>& i)>;
/*!
* \brief create a place holder tensor.
* \param shape The shape of the tensor.
* \param dtype the data type of the tensor.
* \param name The name of the Tensor.
*/
TVM_DLL Tensor placeholder(Array<Expr> shape,
Type dtype = Float(32),
std::string name = "placeholder");
/*!
* \brief Construct a new tensor by computing over shape,
* using the computation rule: result_tensor[axis] = fcompute(axis)
* \param shape Shape of the tensor.
* \param fcompute The compute function to create the tensor.
* \param name The optional name of the tensor.
* \param tag The optional tag of the tensor.
*/
TVM_DLL Tensor compute(Array<Expr> shape,
FCompute fcompute,
std::string name = "tensor",
std::string tag = "");
/*!
* \brief Construct a new tensor by computing over shape,
* using the computation rule: result_tensor[axis] = fcompute(axis)
* \param shape Shape of the tensor.
* \param fcompute The compute function to create the tensors.
* \param name The optional name of the tensor.
* \param tag The optional tag of the tensor.
*/
TVM_DLL Array<Tensor> compute(Array<Expr> shape,
FBatchCompute fcompute,
std::string name = "tensor",
std::string tag = "");
/*!
* \brief Construct new tensors by scan.
*
* \param init The intialize tensor of first K steps.
* \param update The update tensor indicated the updated result after each timestamp.
* \param state_placeholder The placeholder for the states.
* \param inputs The inputs to the scan body, this is optional,
* but recommended to provide concrete information about scan body.
* \param name The optional name of the tensor.
* \param tag The optional tag of the tensor.
*/
TVM_DLL Array<Tensor> scan(Array<Tensor> init,
Array<Tensor> update,
Array<Tensor> state_placeholder,
Array<Tensor> inputs = Array<Tensor>(),
std::string name = "scan",
std::string tag = "");
// same as compute, specialized for different fcompute function
inline Tensor compute(Array<Expr> shape,
std::function<Expr(Var)> f,
std::string name = "tensor",
std::string tag = "") {
FCompute fc = [f] (const Array<Var>& i) { return f(i[0]); };
return compute(shape, fc, name, tag);
}
inline Tensor compute(Array<Expr> shape,
std::function<Expr(Var, Var)> f,
std::string name = "tensor",
std::string tag = "") {
FCompute fc = [f] (const Array<Var>& i) { return f(i[0], i[1]); };
return compute(shape, fc, name, tag);
}
inline Tensor compute(Array<Expr> shape,
std::function<Expr(Var, Var, Var)> f,
std::string name = "tensor",
std::string tag = "") {
FCompute fc = [f] (const Array<Var>& i) { return f(i[0], i[1], i[2]); };
return compute(shape, fc, name, tag);
}
inline Tensor compute(Array<Expr> shape,
std::function<Expr(Var, Var, Var, Var)> f,
std::string name = "tensor",
std::string tag = "") {
FCompute fc = [f] (const Array<Var>& i) { return f(i[0], i[1], i[2], i[3]); };
return compute(shape, fc, name, tag);
}
// inline function.
inline const OperationNode* Operation::operator->() const {
return static_cast<const OperationNode*>(node_.get());
}
} // namespace tvm
#endif // TVM_OPERATION_H_