Open deep learning compiler stack for cpu, gpu and specialized accelerators
Перейти к файлу
Nick Hynes a479432d90 [RUST] Rust DSO module (#2976) 2019-05-28 15:20:18 -07:00
.github
3rdparty Typo: Tensorflow --> TensorFlow (#3249) 2019-05-28 13:35:25 -07:00
apps Fixed a typo (#3218) 2019-05-24 17:48:58 -07:00
cmake [Contrib] cblas batch_matmul (#3210) 2019-05-21 16:05:28 -07:00
conda
docker [CI] Add file type check (#3116) 2019-04-28 12:04:19 -07:00
docs [Doc][Relay] Add VM doc (#3188) 2019-05-27 15:24:54 -07:00
golang [GOLANG] Some fixes for golang latest version compiler. #3119 (#3182) 2019-05-13 10:03:32 -07:00
include/tvm kCustomBegin overlapped with kExtEnd; incr by 1 (#3250) 2019-05-28 13:35:09 -07:00
jvm
nnvm [Relay][Frontend] Add Crop op converter (#3241) 2019-05-25 17:40:02 -07:00
python [Relay][Frontend] Add Crop op converter (#3241) 2019-05-25 17:40:02 -07:00
rust [RUST] Rust DSO module (#2976) 2019-05-28 15:20:18 -07:00
src Move CombineParallelConv2D to opt level 4 (#3248) 2019-05-28 11:02:48 -07:00
tests [RUST] Rust DSO module (#2976) 2019-05-28 15:20:18 -07:00
topi [C++][API] Consistent RAII scoping API. (#3231) 2019-05-24 09:29:14 -07:00
tutorials [RELAY]Frontend darknet (#2773) 2019-05-25 06:38:08 +09:00
vta [VTA][TSIM] Use Module instead of RawModule for testbench by creating an empty bundle for the IO (#3242) 2019-05-27 21:29:55 -07:00
web
.clang-format
.gitignore Update .gitignore (#3199) 2019-05-16 11:54:43 -07:00
.gitmodules
CMakeLists.txt [Datatypes] Custom datatypes (#2900) 2019-05-15 13:34:30 -07:00
CONTRIBUTORS.md [Team] Eddie -> PMC (#3220) 2019-05-21 22:28:48 -07:00
Jenkinsfile [CI] Always run cpptest during build to ensure library correctness (#3147) 2019-05-08 08:14:08 -07:00
LICENSE
Makefile
NEWS.md
NOTICE
README.md
version.py

README.md

Open Deep Learning Compiler Stack

GitHub license Build Status

Documentation | Contributors | Community | Release Notes

TVM is a compiler stack for deep learning systems. It is designed to close the gap between the productivity-focused deep learning frameworks, and the performance- and efficiency-focused hardware backends. TVM works with deep learning frameworks to provide end to end compilation to different backends. Checkout the tvm stack homepage for more information.

License

© Contributors Licensed under an Apache-2.0 license.

Contribute to TVM

TVM adopts apache committer model, we aim to create an open source project that is maintained and owned by the community. Checkout the Contributor Guide

Acknowledgement

We learnt a lot from the following projects when building TVM.

  • Halide: TVM uses HalideIR as data structure for arithmetic simplification and low level lowering. We also learnt and adapted some part of lowering pipeline from Halide.
  • Loopy: use of integer set analysis and its loop transformation primitives.
  • Theano: the design inspiration of symbolic scan operator for recurrence.