Open deep learning compiler stack for cpu, gpu and specialized accelerators
Перейти к файлу
Tianqi Chen a961b29c5c [TOPI] Fix softmax bug (#437) 2017-09-08 19:00:24 -07:00
HalideIR@f3eb854595 [DOC] Release note (#340) 2017-08-17 11:42:14 -07:00
apps [DOCS][APP] Add Example for C++ deployment (#398) 2017-08-30 08:50:36 -07:00
cmake
dlpack@9422e98f3f [submodule] update dlpack (#403) 2017-08-31 08:58:23 -07:00
dmlc-core@87a0c16267 [SUBMODULE] update dmlc-core and Test (#387) 2017-08-25 15:16:49 -07:00
docs [BUILD] Improve build instruction with llvm. (#422) 2017-09-04 19:36:46 -07:00
include/tvm [SCHEDULE] Enhance cache_write to enable layout change. (#432) 2017-09-07 15:50:25 -07:00
jvm [tvm4j] Java runtime README (#391) 2017-08-27 10:09:43 -07:00
make [RUNTIME] v2: runtime support for rocm (#386) 2017-08-25 17:00:29 -07:00
python [SCHEDULE] Enhance cache_write to enable layout change. (#432) 2017-09-07 15:50:25 -07:00
src [LLVM] Protect ll when emit pass (#436) 2017-09-08 18:46:46 -07:00
tests Conv2d updated (#435) 2017-09-08 16:15:11 -07:00
topi [TOPI] Fix softmax bug (#437) 2017-09-08 19:00:24 -07:00
tutorials [DOCS] Fix markdown syntax error (#430) 2017-09-07 09:03:43 -07:00
verilog
web
.gitignore [TEST] Add memoize to save test data (#424) 2017-09-04 21:55:05 -07:00
.gitmodules [SUBMODULE] switch to https (#341) 2017-08-17 11:51:31 -07:00
.travis.yml
CMakeLists.txt [BUILD] Improve build instruction with llvm. (#422) 2017-09-04 19:36:46 -07:00
CONTRIBUTORS.md
Jenkinsfile [TEST] Jenkinsfile (#389) 2017-08-26 12:08:59 -07:00
LICENSE
Makefile [RUNTIME] v2: runtime support for rocm (#386) 2017-08-25 17:00:29 -07:00
NEWS.md [DOC] Release note (#340) 2017-08-17 11:42:14 -07:00
README.md [DOC] Add link to release blog (#342) 2017-08-17 12:55:30 -07:00

README.md

TVM: Tensor IR Stack for Deep Learning Systems

GitHub license Build Status

Installation | Documentation | Tutorials | Operator Inventory | FAQ | Contributors | Release Notes

TVM is a Tensor intermediate representation(IR) stack for deep learning systems. It is designed to close the gap between the productivity-focused deep learning frameworks, and the performance- and efficiency-focused hardware backends. TVM works with deep learning frameworks to provide end to end compilation to different backends. Checkout our announcement for more details.

License

© Contributors, 2017. Licensed under an Apache-2.0 license.

Contribute to TVM

TVM adopts apache committer model, we aim to create an open source project that is maintained and owned by the community.