C# samples: Faster R-CNN (#4733)
* C# sample: Faster R-CNN * Add link to new sample in samples README * Remove duplicate image
This commit is contained in:
Родитель
de2685261b
Коммит
ce65275edf
|
@ -0,0 +1,87 @@
|
|||
namespace Microsoft.ML.OnnxRuntime.FasterRcnnSample
|
||||
{
|
||||
public class LabelMap
|
||||
{
|
||||
public static readonly string[] Labels = new[] {"__background",
|
||||
"person",
|
||||
"bicycle",
|
||||
"car",
|
||||
"motorcycle",
|
||||
"airplane",
|
||||
"bus",
|
||||
"train",
|
||||
"truck",
|
||||
"boat",
|
||||
"traffic light",
|
||||
"fire hydrant",
|
||||
"stop sign",
|
||||
"parking meter",
|
||||
"bench",
|
||||
"bird",
|
||||
"cat",
|
||||
"dog",
|
||||
"horse",
|
||||
"sheep",
|
||||
"cow",
|
||||
"elephant",
|
||||
"bear",
|
||||
"zebra",
|
||||
"giraffe",
|
||||
"backpack",
|
||||
"umbrella",
|
||||
"handbag",
|
||||
"tie",
|
||||
"suitcase",
|
||||
"frisbee",
|
||||
"skis",
|
||||
"snowboard",
|
||||
"sports ball",
|
||||
"kite",
|
||||
"baseball bat",
|
||||
"baseball glove",
|
||||
"skateboard",
|
||||
"surfboard",
|
||||
"tennis racket",
|
||||
"bottle",
|
||||
"wine glass",
|
||||
"cup",
|
||||
"fork",
|
||||
"knife",
|
||||
"spoon",
|
||||
"bowl",
|
||||
"banana",
|
||||
"apple",
|
||||
"sandwich",
|
||||
"orange",
|
||||
"broccoli",
|
||||
"carrot",
|
||||
"hot dog",
|
||||
"pizza",
|
||||
"donut",
|
||||
"cake",
|
||||
"chair",
|
||||
"couch",
|
||||
"potted plant",
|
||||
"bed",
|
||||
"dining table",
|
||||
"toilet",
|
||||
"tv",
|
||||
"laptop",
|
||||
"mouse",
|
||||
"remote",
|
||||
"keyboard",
|
||||
"cell phone",
|
||||
"microwave",
|
||||
"oven",
|
||||
"toaster",
|
||||
"sink",
|
||||
"refrigerator",
|
||||
"book",
|
||||
"clock",
|
||||
"vase",
|
||||
"scissors",
|
||||
"teddy bear",
|
||||
"hair drier",
|
||||
"toothbrush"};
|
||||
}
|
||||
}
|
|
@ -0,0 +1,15 @@
|
|||
<Project Sdk="Microsoft.NET.Sdk">
|
||||
|
||||
<PropertyGroup>
|
||||
<OutputType>Exe</OutputType>
|
||||
<TargetFramework>netcoreapp3.1</TargetFramework>
|
||||
<LangVersion>8.0</LangVersion>
|
||||
</PropertyGroup>
|
||||
|
||||
<ItemGroup>
|
||||
<PackageReference Include="Microsoft.ML.OnnxRuntime" Version="1.4.0" />
|
||||
<PackageReference Include="Sixlabors.ImageSharp" Version="1.0.0" />
|
||||
<PackageReference Include="SixLabors.ImageSharp.Drawing" Version="1.0.0-beta0010" />
|
||||
</ItemGroup>
|
||||
|
||||
</Project>
|
|
@ -0,0 +1,26 @@
|
|||
namespace Microsoft.ML.OnnxRuntime.FasterRcnnSample
|
||||
{
|
||||
public class Prediction
|
||||
{
|
||||
public Box Box { get; set; }
|
||||
public string Label { get; set; }
|
||||
public float Confidence { get; set; }
|
||||
}
|
||||
|
||||
public class Box
|
||||
{
|
||||
public float Xmin { get; set; }
|
||||
public float Ymin { get; set; }
|
||||
public float Xmax { get; set; }
|
||||
public float Ymax { get; set; }
|
||||
|
||||
public Box(float xmin, float ymin, float xmax, float ymax)
|
||||
{
|
||||
Xmin = xmin;
|
||||
Ymin = ymin;
|
||||
Xmax = xmax;
|
||||
Ymax = ymax;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,107 @@
|
|||
using System;
|
||||
using System.Collections.Generic;
|
||||
using System.IO;
|
||||
using System.Linq;
|
||||
using Microsoft.ML.OnnxRuntime.Tensors;
|
||||
using SixLabors.ImageSharp;
|
||||
using SixLabors.ImageSharp.Formats;
|
||||
using SixLabors.ImageSharp.PixelFormats;
|
||||
using SixLabors.ImageSharp.Processing;
|
||||
using SixLabors.ImageSharp.Drawing.Processing;
|
||||
using SixLabors.Fonts;
|
||||
|
||||
namespace Microsoft.ML.OnnxRuntime.FasterRcnnSample
|
||||
{
|
||||
class Program
|
||||
{
|
||||
public static void Main(string[] args)
|
||||
{
|
||||
// Read paths
|
||||
string modelFilePath = args[0];
|
||||
string imageFilePath = args[1];
|
||||
string outImageFilePath = args[2];
|
||||
|
||||
// Read image
|
||||
using Image<Rgb24> image = Image.Load<Rgb24>(imageFilePath, out IImageFormat format);
|
||||
|
||||
// Resize image
|
||||
float ratio = 800f / Math.Min(image.Width, image.Height);
|
||||
using Stream imageStream = new MemoryStream();
|
||||
image.Mutate(x => x.Resize((int)(ratio * image.Width), (int)(ratio * image.Height)));
|
||||
image.Save(imageStream, format);
|
||||
|
||||
// Preprocess image
|
||||
var paddedHeight = (int)(Math.Ceiling(image.Height / 32f) * 32f);
|
||||
var paddedWidth = (int)(Math.Ceiling(image.Width / 32f) * 32f);
|
||||
Tensor<float> input = new DenseTensor<float>(new[] { 3, paddedHeight, paddedWidth });
|
||||
var mean = new[] { 102.9801f, 115.9465f, 122.7717f };
|
||||
for (int y = paddedHeight - image.Height; y < image.Height; y++)
|
||||
{
|
||||
Span<Rgb24> pixelSpan = image.GetPixelRowSpan(y);
|
||||
for (int x = paddedWidth - image.Width; x < image.Width; x++)
|
||||
{
|
||||
input[0, y, x] = pixelSpan[x].B - mean[0];
|
||||
input[1, y, x] = pixelSpan[x].G - mean[1];
|
||||
input[2, y, x] = pixelSpan[x].R - mean[2];
|
||||
}
|
||||
}
|
||||
|
||||
// Setup inputs and outputs
|
||||
var inputs = new List<NamedOnnxValue>
|
||||
{
|
||||
NamedOnnxValue.CreateFromTensor("image", input)
|
||||
};
|
||||
|
||||
// Run inference
|
||||
using var session = new InferenceSession(modelFilePath);
|
||||
using IDisposableReadOnlyCollection<DisposableNamedOnnxValue> results = session.Run(inputs);
|
||||
|
||||
// Postprocess to get predictions
|
||||
var resultsArray = results.ToArray();
|
||||
float[] boxes = resultsArray[0].AsEnumerable<float>().ToArray();
|
||||
long[] labels = resultsArray[1].AsEnumerable<long>().ToArray();
|
||||
float[] confidences = resultsArray[2].AsEnumerable<float>().ToArray();
|
||||
var predictions = new List<Prediction>();
|
||||
var minConfidence = 0.7f;
|
||||
for (int i = 0; i < boxes.Length - 4; i += 4)
|
||||
{
|
||||
var index = i / 4;
|
||||
if (confidences[index] >= minConfidence)
|
||||
{
|
||||
predictions.Add(new Prediction
|
||||
{
|
||||
Box = new Box(boxes[i], boxes[i + 1], boxes[i + 2], boxes[i + 3]),
|
||||
Label = LabelMap.Labels[labels[index]],
|
||||
Confidence = confidences[index]
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Put boxes, labels and confidence on image and save for viewing
|
||||
using var outputImage = File.OpenWrite(outImageFilePath);
|
||||
Font font = SystemFonts.CreateFont("Arial", 16);
|
||||
foreach (var p in predictions)
|
||||
{
|
||||
image.Mutate(x =>
|
||||
{
|
||||
x.DrawLines(Color.Red, 2f, new PointF[] {
|
||||
|
||||
new PointF(p.Box.Xmin, p.Box.Ymin),
|
||||
new PointF(p.Box.Xmax, p.Box.Ymin),
|
||||
|
||||
new PointF(p.Box.Xmax, p.Box.Ymin),
|
||||
new PointF(p.Box.Xmax, p.Box.Ymax),
|
||||
|
||||
new PointF(p.Box.Xmax, p.Box.Ymax),
|
||||
new PointF(p.Box.Xmin, p.Box.Ymax),
|
||||
|
||||
new PointF(p.Box.Xmin, p.Box.Ymax),
|
||||
new PointF(p.Box.Xmin, p.Box.Ymin)
|
||||
});
|
||||
x.DrawText($"{p.Label}, {p.Confidence:0.00}", font, Color.White, new PointF(p.Box.Xmin, p.Box.Ymin));
|
||||
});
|
||||
}
|
||||
image.Save(outputImage, format);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,172 @@
|
|||
# C# Sample: Faster R-CNN
|
||||
|
||||
The sample walks through how to run a pretrained Faster R-CNN object detection ONNX model using the ONNX Runtime C# API.
|
||||
|
||||
The source code for this sample is available [here](Program.cs).
|
||||
|
||||
## Prerequisites
|
||||
|
||||
To run this sample, you'll need the following things:
|
||||
|
||||
1. Install [.NET Core 3.1](https://dotnet.microsoft.com/download/dotnet-core/3.1) or higher for you OS (Mac, Windows or Linux).
|
||||
2. Download the [Faster R-CNN](https://github.com/onnx/models/blob/master/vision/object_detection_segmentation/faster-rcnn/model/FasterRCNN-10.onnx) ONNX model to your local system.
|
||||
3. Download [this demo image](demo.jpg) to test the model. You can also use any image you like.
|
||||
|
||||
## Getting Started
|
||||
|
||||
Now we have everything set up, we can start adding code to run the model on the image. We'll do this in the main method of the program for simplicity.
|
||||
|
||||
### Read paths
|
||||
|
||||
Firstly, let's read the path to the model, path to the image we want to test, and path to the output image:
|
||||
|
||||
```cs
|
||||
string modelFilePath = args[0];
|
||||
string imageFilePath = args[1];
|
||||
string outImageFilePath = args[2];
|
||||
```
|
||||
|
||||
### Read image
|
||||
|
||||
Next, we will read the image in using the cross-platform image library [ImageSharp](https://www.nuget.org/packages/SixLabors.ImageSharp):
|
||||
|
||||
```cs
|
||||
using Image<Rgb24> image = Image.Load<Rgb24>(imageFilePath, out IImageFormat format);
|
||||
```
|
||||
|
||||
Note, we're specifically reading the `Rgb24` type so we can efficiently preprocess the image in a later step.
|
||||
|
||||
### Resize image
|
||||
|
||||
Next, we will resize the image to the appropriate size that the model is expecting; it is recommended to resize the image such that both height and width are within the range of [800, 1333].
|
||||
|
||||
```cs
|
||||
float ratio = 800f / Math.Min(image.Width, image.Height);
|
||||
using Stream imageStream = new MemoryStream();
|
||||
image.Mutate(x => x.Resize((int)(ratio * image.Width), (int)(ratio * image.Height)));
|
||||
image.Save(imageStream, format);
|
||||
```
|
||||
|
||||
### Preprocess image
|
||||
|
||||
Next, we will preprocess the image according to the [requirements of the model](https://github.com/onnx/models/tree/master/vision/object_detection_segmentation/faster-rcnn#preprocessing-steps):
|
||||
|
||||
```cs
|
||||
var paddedHeight = (int)(Math.Ceiling(image.Height / 32f) * 32f);
|
||||
var paddedWidth = (int)(Math.Ceiling(image.Width / 32f) * 32f);
|
||||
Tensor<float> input = new DenseTensor<float>(new[] { 3, paddedHeight, paddedWidth });
|
||||
var mean = new[] { 102.9801f, 115.9465f, 122.7717f };
|
||||
for (int y = paddedHeight - image.Height; y < image.Height; y++)
|
||||
{
|
||||
Span<Rgb24> pixelSpan = image.GetPixelRowSpan(y);
|
||||
for (int x = paddedWidth - image.Width; x < image.Width; x++)
|
||||
{
|
||||
input[0, y, x] = pixelSpan[x].B - mean[0];
|
||||
input[1, y, x] = pixelSpan[x].G - mean[1];
|
||||
input[2, y, x] = pixelSpan[x].R - mean[2];
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Here, we're creating a Tensor of the required size `(channels, paddedHeight, paddedWidth)`, accessing the pixel values, preprocessing them and finally assigning them to the tensor at the appropriate indicies.
|
||||
|
||||
### Setup inputs
|
||||
|
||||
Next, we will create the inputs to the model:
|
||||
|
||||
```cs
|
||||
var inputs = new List<NamedOnnxValue>
|
||||
{
|
||||
NamedOnnxValue.CreateFromTensor("image", input)
|
||||
};
|
||||
```
|
||||
|
||||
To check the input node names for an ONNX model, you can use [Netron](https://github.com/lutzroeder/netron) to visualise the model and see input/output names. In this case, this model has `image` as the input node name.
|
||||
|
||||
### Run inference
|
||||
|
||||
Next, we will create an inference session and run the input through it:
|
||||
|
||||
```cs
|
||||
using var session = new InferenceSession(modelFilePath);
|
||||
using IDisposableReadOnlyCollection<DisposableNamedOnnxValue> results = session.Run(inputs);
|
||||
```
|
||||
|
||||
### Postprocess output
|
||||
|
||||
Next, we will need to postprocess the output to get boxes and associated label and confidence scores for each box:
|
||||
|
||||
```cs
|
||||
var resultsArray = results.ToArray();
|
||||
float[] boxes = resultsArray[0].AsEnumerable<float>().ToArray();
|
||||
long[] labels = resultsArray[1].AsEnumerable<long>().ToArray();
|
||||
float[] confidences = resultsArray[2].AsEnumerable<float>().ToArray();
|
||||
var predictions = new List<Prediction>();
|
||||
var minConfidence = 0.7f;
|
||||
for (int i = 0; i < boxes.Length - 4; i += 4)
|
||||
{
|
||||
var index = i / 4;
|
||||
if (confidences[index] >= minConfidence)
|
||||
{
|
||||
predictions.Add(new Prediction
|
||||
{
|
||||
Box = new Box(boxes[i], boxes[i + 1], boxes[i + 2], boxes[i + 3]),
|
||||
Label = LabelMap.Labels[labels[index]],
|
||||
Confidence = confidences[index]
|
||||
});
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Note, we're only taking boxes that have a confidence above 0.7 to remove false positives.
|
||||
|
||||
### View prediction
|
||||
|
||||
Next, we'll draw the boxes and associated labels and confidence scores on the image to see how the model went:
|
||||
|
||||
```cs
|
||||
using var outputImage = File.OpenWrite(outImageFilePath);
|
||||
Font font = SystemFonts.CreateFont("Arial", 16);
|
||||
foreach (var p in predictions)
|
||||
{
|
||||
image.Mutate(x =>
|
||||
{
|
||||
x.DrawLines(Color.Red, 2f, new PointF[] {
|
||||
|
||||
new PointF(p.Box.Xmin, p.Box.Ymin),
|
||||
new PointF(p.Box.Xmax, p.Box.Ymin),
|
||||
|
||||
new PointF(p.Box.Xmax, p.Box.Ymin),
|
||||
new PointF(p.Box.Xmax, p.Box.Ymax),
|
||||
|
||||
new PointF(p.Box.Xmax, p.Box.Ymax),
|
||||
new PointF(p.Box.Xmin, p.Box.Ymax),
|
||||
|
||||
new PointF(p.Box.Xmin, p.Box.Ymax),
|
||||
new PointF(p.Box.Xmin, p.Box.Ymin)
|
||||
});
|
||||
x.DrawText($"{p.Label}, {p.Confidence:0.00}", font, Color.White, new PointF(p.Box.Xmin, p.Box.Ymin));
|
||||
});
|
||||
}
|
||||
image.Save(outputImage, format);
|
||||
```
|
||||
|
||||
For each box prediction, we're using ImageSharp to draw red lines to create the boxes, and drawing the label and confidence text.
|
||||
|
||||
## Running the program
|
||||
|
||||
Now the program is created, we can run it will the following command:
|
||||
|
||||
```
|
||||
dotnet run [path-to-model] [path-to-image] [path-to-output-image]
|
||||
```
|
||||
|
||||
e.g. running:
|
||||
|
||||
```
|
||||
dotnet run ~/Downloads/FasterRCNN-10.onnx ~/Downloads/demo.jpg ~/Downloads/out.jpg
|
||||
```
|
||||
|
||||
detects the following objects in the image:
|
||||
|
||||
![](out.jpg)
|
Двоичный файл не отображается.
После Ширина: | Высота: | Размер: 167 KiB |
Двоичный файл не отображается.
После Ширина: | Высота: | Размер: 308 KiB |
|
@ -39,6 +39,7 @@ For a list of available dockerfiles and published images to help with getting st
|
|||
## C#
|
||||
* [Inference Tutorial](../docs/CSharp_API.md#getting-started)
|
||||
* [ResNet50 v2 Tutorial](../csharp/sample/Microsoft.ML.OnnxRuntime.ResNet50v2Sample)
|
||||
* [Faster R-CNN Tutorial](../csharp/sample/Microsoft.ML.OnnxRuntime.FasterRcnnSample)
|
||||
|
||||
## C/C++
|
||||
* [C: SqueezeNet](../csharp/test/Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp)
|
||||
|
|
Загрузка…
Ссылка в новой задаче