Support the Unigram tokenizer kind from sentencepiece library (#811)

* initial commit

* Ugm vocab loaded is good

* test passed

* fixes unit test on win32

* finish the parity check

* code refinement

* code refinement for review
This commit is contained in:
Wenbing Li 2024-09-19 15:46:13 -07:00 коммит произвёл GitHub
Родитель 0d5d19f67b
Коммит 176c1d0138
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: B5690EEEBB952194
40 изменённых файлов: 671562 добавлений и 317 удалений

Просмотреть файл

@ -693,7 +693,7 @@ if(OCOS_ENABLE_BLINGFIRE)
endif()
if(OCOS_ENABLE_GPT2_TOKENIZER OR OCOS_ENABLE_WORDPIECE_TOKENIZER)
target_include_directories(ocos_operators PUBLIC ${nlohmann_json_SOURCE_DIR}/single_include)
target_include_directories(ocos_operators PUBLIC ${nlohmann_json_SOURCE_DIR}/include)
endif()
# If building a shared library we can't throw an internal exception type across the library boundary as the type

Просмотреть файл

@ -11,14 +11,6 @@
#include <Windows.h>
#endif
#define ORTX_RETURN_IF_ERROR(expr) \
do { \
auto _status = (expr); \
if (_status != nullptr) { \
return _status; \
} \
} while (0)
template <typename T>
bool TryParseStringWithClassicLocale(std::string_view str, T& value) {
if constexpr (std::is_integral<T>::value && std::is_unsigned<T>::value) {
@ -111,8 +103,3 @@ T ParseEnvironmentVariableWithDefault(const std::string& name, const T& default_
return default_value;
}
inline bool IsScalarOr1ElementVector(size_t num_dimensions, int64_t shape_size) {
if (num_dimensions == 0 || (num_dimensions == 1 && shape_size == 1)) return true;
return false;
}

Просмотреть файл

@ -12,19 +12,20 @@
#include <string>
#include <fstream>
namespace ort_extensions {
class path {
public:
path() = default;
path(const std::string& path) : path_(path) {
explicit path(const std::string& path) : path_(path) {
#ifdef _WIN32
w_path_ = to_wstring();
#endif // _WIN32
};
#ifdef _WIN32
path(const std::wstring& wpath) {
explicit path(const std::wstring& wpath) {
int size_needed = WideCharToMultiByte(CP_UTF8, 0, wpath.c_str(), -1, nullptr, 0, nullptr, nullptr);
std::string utf8_str(size_needed, 0);
WideCharToMultiByte(CP_UTF8, 0, wpath.c_str(), -1, &utf8_str[0], size_needed, nullptr, nullptr);
@ -53,31 +54,65 @@ class path {
return path_;
}
path join(const std::string& path) const {
return path_ + separator + path;
path join(const std::string& str) const {
return path(path_ + separator + str);
}
path operator/(const std::string& path) const {
return join(path);
path operator/(const std::string& str) const {
return join(str);
}
path operator/(const path& path) {
return join(path.path_);
}
bool is_regular_file() const {
auto info = get_stat();
return (info.st_mode & S_IFREG) != 0;
}
bool is_directory() const {
auto info = get_stat();
return (info.st_mode & S_IFDIR) != 0;
}
std::string extension() const {
return path_.substr(path_.find_last_of('.'));
}
std::string parent_path() const {
std::string sep = {separator};
#ifdef _WIN32
sep += "/";
#endif // _WIN32
auto pos = path_.find_last_of(sep);
if (pos == std::string::npos) {
return "";
}
return path_.substr(0, pos);
}
#ifdef _WIN32
struct _stat64 get_stat() const {
struct _stat64 info;
if (_wstat64(w_path_.c_str(), &info) != 0) {
return false;
return {};
}
return info;
}
#else
struct stat get_stat() const {
struct stat info;
if (stat(path_.c_str(), &info) != 0) {
return false;
return {};
}
return info;
}
#endif // _WIN32
return (info.st_mode & S_IFDIR) != 0;
bool exists() const {
auto info = get_stat();
return (info.st_mode & S_IFMT) != 0;
}
private:
@ -95,3 +130,5 @@ class path {
};
} // namespace ort_extensions
namespace ortx = ort_extensions;

4
cmake/externals/json.cmake поставляемый
Просмотреть файл

@ -1,10 +1,8 @@
FetchContent_Declare(nlohmann_json
GIT_REPOSITORY https://github.com/nlohmann/json.git
GIT_TAG v3.10.5
SOURCE_SUBDIR single_include
SOURCE_SUBDIR not_set
)
set(JSON_BuildTests OFF CACHE INTERNAL "")
add_compile_definitions(JSON_HAS_CPP_17=1)
FetchContent_MakeAvailable(nlohmann_json)

Просмотреть файл

@ -464,10 +464,10 @@ class Tensor<std::string> : public TensorBase {
void SetStringOutput(const std::vector<const char*>& ss, const std::vector<int64_t>& dims) {
storage_->SetStringOutput(ss, dims);
}
const Span<std::string>& AsSpan() {
const Span<std::string>& AsSpan() const {
ORTX_CXX_API_THROW("span for TensorT of string not implemented", ORT_RUNTIME_EXCEPTION);
}
const std::string& AsScalar() {
const std::string& AsScalar() const {
auto& ss = storage_->Data();
if (ss.size() != 1) {
ORTX_CXX_API_THROW("to get a scalar, shape must be {1}, actual shape: " + Shape2Str(), ORT_RUNTIME_EXCEPTION);
@ -542,10 +542,10 @@ class Tensor<std::string_view> : public TensorBase {
void SetStringOutput(const std::vector<const char*>& ss, const std::vector<int64_t>& dims) {
storage_->SetStringOutput(ss, dims);
}
const Span<std::string_view>& AsSpan() {
const Span<std::string_view>& AsSpan() const {
ORTX_CXX_API_THROW("span for TensorT of string not implemented", ORT_RUNTIME_EXCEPTION);
}
const std::string_view& AsScalar() {
const std::string_view& AsScalar() const {
auto& ss = storage_->Data();
if (ss.size() != 1) {
ORTX_CXX_API_THROW("to get a scalar, shape must be {1}, actual shape: " + Shape2Str(), ORT_RUNTIME_EXCEPTION);

Просмотреть файл

@ -26,7 +26,3 @@ ORT_API_CALL GetActiveOrtAPIVersion();
#ifdef __cplusplus
}
#endif
#if defined(ENABLE_C_API)
#include "ortx_tokenizer.h"
#endif // ENABLE_C_API

Просмотреть файл

@ -7,7 +7,6 @@
// OrtW: ONNX Runtime C ABI Wrapper
namespace OrtW {
struct CustomOpApi {
CustomOpApi(const OrtApi& api) : api_(api) {}
@ -371,3 +370,16 @@ struct OrtTensorDimensions : std::vector<int64_t> {
return size() == 1;
}
};
inline bool IsScalarOr1ElementVector(size_t num_dimensions, int64_t shape_size) {
if (num_dimensions == 0 || (num_dimensions == 1 && shape_size == 1)) return true;
return false;
}
#define ORTX_RETURN_IF_ERROR(expr) \
do { \
auto _status = (expr); \
if (_status != nullptr) { \
return _status; \
} \
} while (0)

Просмотреть файл

@ -4,7 +4,6 @@
#pragma once
#include "ocos.h"
#include "add_mul_impl.cuh"
#include "ortx_common.h"
namespace contrib {

Просмотреть файл

@ -4,7 +4,6 @@
#pragma once
#include "ocos.h"
#include "mul_sigmoid_impl.cuh"
#include "ortx_common.h"
namespace contrib {

Просмотреть файл

@ -4,7 +4,6 @@
#pragma once
#include "ocos.h"
#include "negxplus1_impl.cuh"
#include "ortx_common.h"
namespace contrib {

Просмотреть файл

@ -4,7 +4,6 @@
#pragma once
#include "ocos.h"
#include "replace_zero_impl.cuh"
#include "ortx_common.h"
namespace contrib {

Просмотреть файл

@ -4,7 +4,6 @@
#pragma once
#include "ocos.h"
#include "transpose_cast_impl.cuh"
#include "ortx_common.h"
namespace contrib {

Просмотреть файл

@ -8,7 +8,6 @@
#include <opencv2/imgcodecs.hpp>
#include "ocos.h"
#include "ortx_common.h"
#include <cstdint>

Просмотреть файл

@ -3,10 +3,6 @@
#pragma once
#include "ocos.h"
#include "ustring.h"
#include "narrow.h"
#include "ortx_common.h"
#include <string>
#include <vector>
#include <locale>
@ -17,6 +13,10 @@
#include <algorithm>
#include <sstream>
#include "ustring.h"
#include "narrow.h"
#include "tokjson_types.h"
struct KernelBpeDecoder {
public:
virtual ~KernelBpeDecoder() = default;
@ -115,8 +115,6 @@ struct KernelBpeDecoder {
arr_vocab_.shrink_to_fit();
}
const std::string spm_underscore{"\xe2\x96\x81"};
static bool IsSpmByteWord(std::string_view word) {
return word.size() == 6 && word[0] == '<' && word[1] == '0' && word[2] == 'x' && word[5] == '>';
}
@ -146,7 +144,7 @@ struct KernelBpeDecoder {
std::copy(ids_dim.begin(), ids_dim.begin() + ids_dim.size() - 1, output_dim.begin());
}
bool spm_mode = byte_decoder_.count(ustring(spm_underscore)[0]) > 0;
bool spm_mode = byte_decoder_.count(ustring(ort_extensions::spm_escaped_space)[0]) > 0;
size_t seq_len = ids_dim.back();
size_t string_batch = ids.NumberOfElement() / seq_len;
@ -180,7 +178,7 @@ struct KernelBpeDecoder {
char token = {static_cast<char>(strtol(buf, NULL, 16))};
decoded_token.push_back(token);
} else {
decoded_token.append(ReplaceAll(piece, spm_underscore, " "));
decoded_token.append(ReplaceAll(piece, std::string(ort_extensions::spm_escaped_space), " "));
}
} else {
// the common bpe case

Просмотреть файл

@ -7,12 +7,14 @@
#include "file_sys.h"
#include "nlohmann/json.hpp"
#include "bpe_types.h"
#include "tokjson_types.h"
namespace ort_extensions::bpe {
class TokenJsonConfig final {
public:
static constexpr const char* kDefaultVocabFile = "tokenizer.json";
TokenJsonConfig() {}
~TokenJsonConfig() {}
using json = nlohmann::json;
@ -24,36 +26,59 @@ class TokenJsonConfig final {
return OrtxStatus(kOrtxErrorInvalidArgument, "json_path is empty.");
}
auto file_path = path(json_path) / "tokenizer_config.json";
std::ifstream ifs = file_path.open();
if (!ifs.is_open()) {
return OrtxStatus(kOrtxErrorInvalidFile, "Failed to open a json file: " + file_path.string());
ortx::path tok_dir(json_path);
ortx::path vocab_path(json_path);
ortx::path tok_path_obj(json_path);
if (tok_path_obj.is_directory()) {
vocab_path = tok_dir / kDefaultVocabFile;
} else {
if (!tok_path_obj.exists()) {
return OrtxStatus(kOrtxErrorInvalidFile, "Invalid file: " + tok_path_obj.string());
}
tok_dir = ortx::path(tok_path_obj.parent_path());
}
auto vocab_file_path = path(json_path) / "tokenizer.json";
vocab_path_ = vocab_file_path.string();
std::ifstream vocab_fs = vocab_file_path.open();
if (!vocab_fs.is_open()) {
// No tokenizer.json file present; search for tokenizer module file
auto module_file_path = path(json_path) / "tokenizer_module.json";
module_path_ = module_file_path.string();
std::ifstream tok_module_ifs = module_file_path.open();
if (!tok_module_ifs.is_open()) {
return OrtxStatus(kOrtxErrorInvalidFile, "No tokenizer.json or tokenizer_module.json file found.");
auto config_path = tok_dir / "tokenizer_config.json";
std::ifstream ifs = config_path.open();
if (!ifs.is_open()) {
return OrtxStatus(kOrtxErrorInvalidFile, "Failed to open a json file: " + config_path.string());
}
nlohmann::json json_config = nlohmann::json::parse(ifs);
auto module_cfg = tok_dir / "tokenizer_module.json";
if (module_cfg.exists()) {
module_path_ = module_cfg.string();
std::ifstream module_ifs = module_cfg.open();
nlohmann::json module_config = nlohmann::json::parse(module_ifs);
json_config.update(module_config);
}
model_max_length_ = json_config.value("model_max_length", 1e+30);
std::string tiktoken_file = json_config.value("tiktoken_file", "");
if (!tiktoken_file.empty()) {
auto tktok_path = tok_dir / tiktoken_file;
if (tktok_path.exists()) {
vocab_path_ = tktok_path.string();
} else {
nlohmann::json tok_module_json_config = nlohmann::json::parse(tok_module_ifs);
auto tiktoken_path = tok_module_json_config.value("tiktoken_file", "");
vocab_file_path = path(json_path) / tiktoken_path.c_str();
vocab_path_ = vocab_file_path.string();
return OrtxStatus(kOrtxErrorInvalidFile, "Invalid file: " + tiktoken_file);
}
} else {
if (ortx::path(vocab_path).exists()) {
vocab_path_ = vocab_path.string();
} else {
return OrtxStatus(kOrtxErrorInvalidFile, "Invalid file: " + vocab_path.string());
}
}
nlohmann::json json_config = nlohmann::json::parse(ifs);
tokenizer_class_ = json_config.value("tokenizer_class", "");
if (tokenizer_class_.empty()) {
return {};
}
add_bos_token_ = json_config.value("add_bos_token", false);
add_eos_token_ = json_config.value("add_eos_token", false);
clean_up_tokenization_spaces_ = json_config.value("clean_up_tokenization_spaces", false);
model_max_length_ = json_config.value("model_max_length", 1e+30);
tokenizer_class_ = json_config.value("tokenizer_class", "");
auto tok_iter = json_config.find("bos_token");
if (tok_iter != json_config.end() && !tok_iter->is_null()) {
@ -73,18 +98,12 @@ class TokenJsonConfig final {
pad_token_ = json_config.value("pad_token", "");
}
if (tokenizer_class_.empty()) {
return OrtxStatus(kOrtxErrorCorruptData, "Failed to get tokenizer class.");
}
return {};
}
const std::string& GetVocabDataFile() const { return vocab_path_; }
const std::string& GetTikTokenModuleFile() const {
return module_path_;
}
const std::string& GetTikTokenModuleFile() const { return module_path_; }
public:
bool add_bos_token_{};

Просмотреть файл

@ -1,11 +1,10 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "ortx_common.h"
#include "file_sys.h"
#include "bpe_kernels.h"
#include "bpe_json.hpp"
#include "bpe_jsoncfg.hpp"
#include "bpe_tokenizer.hpp"
#include "base64.h"
@ -660,151 +659,7 @@ struct VectorEqual {
}
};
OrtxStatus JsonFastTokenizer::Load(const ort_extensions::bpe::TokenJsonConfig& config) {
std::string voc_file = config.GetVocabDataFile();
std::ifstream ifs = path(voc_file).open();
if (!ifs.is_open()) {
return OrtxStatus(kOrtxErrorInvalidFile, "Failed to open json file: " + voc_file);
}
// consider to use SAX parser for large json file
nlohmann::json tok_json;
std::ifstream module_ifs;
// Following vocab and merges only used for tiktoken case but accessed outside scope below
std::unordered_map<std::string, uint32_t> vocab;
std::vector<std::pair<std::string, std::string>> merges;
if (tiktoken_){
std::string module_file = config.GetTikTokenModuleFile();
module_ifs = path(module_file).open();
if (!module_ifs.is_open()) {
return OrtxStatus(kOrtxErrorInvalidFile, "Failed to open module file: " + module_file);
}
std::unordered_map<std::vector<uint8_t>, uint32_t, VectorHash, VectorEqual> bpe_ranks;
std::string line;
while (std::getline(ifs, line)) {
if (!line.empty()) {
std::istringstream lineStream(line);
std::string token;
uint32_t rank;
while (lineStream >> token >> rank) {
// Decode base64 token and convert rank to int
std::vector<uint8_t> decoded_token;
base64_decode(token, decoded_token);
// Store bpe token and rank
bpe_ranks[decoded_token] = rank;
}
}
}
std::vector<std::tuple<std::vector<uint8_t>, std::vector<uint8_t>, uint32_t>> byte_merges;
bbpe_tokenizer_ = std::make_unique<BpeModel>();
for (const auto& item : bpe_ranks) {
std::vector<uint8_t> token = item.first;
uint32_t rank = item.second;
vocab[JsonFastTokenizer::TokenBytesToString(token)] = rank;
if (token.size() == 1) {
continue;
}
std::vector<std::tuple<std::vector<uint8_t>, std::vector<uint8_t>, uint32_t>> local;
for (size_t index = 1; index < token.size(); index++) {
std::vector<uint8_t> piece_l(token.begin(), token.begin() + index);
std::vector<uint8_t> piece_r(token.begin() + index, token.end());
if (bpe_ranks.count(piece_l) && bpe_ranks.count(piece_r)) {
local.emplace_back(piece_l, piece_r, rank);
}
}
auto compare_bpe_tuples = [&](const std::tuple<std::vector<uint8_t>, std::vector<uint8_t>, uint32_t>& a,
const std::tuple<std::vector<uint8_t>, std::vector<uint8_t>, uint32_t>& b) {
// Compare comparator based on the ranks in bpe_ranks
return bpe_ranks[std::get<0>(a)] < bpe_ranks[std::get<0>(b)] ||
(bpe_ranks[std::get<0>(a)] == bpe_ranks[std::get<0>(b)] && bpe_ranks[std::get<1>(a)] < bpe_ranks[std::get<1>(b)]);
};
std::sort(local.begin(), local.end(), compare_bpe_tuples);
byte_merges.insert(byte_merges.end(), local.begin(), local.end());
}
// Custom comparator that compares the third element of the tuples
auto compare_merge_tuples = [&](const std::tuple<std::vector<uint8_t>, std::vector<uint8_t>, uint32_t>& a,
const std::tuple<std::vector<uint8_t>, std::vector<uint8_t>, uint32_t>& b) {
return std::get<2>(a) < std::get<2>(b);
};
std::sort(byte_merges.begin(), byte_merges.end(), compare_merge_tuples);
// Populate merges
for (auto& val : byte_merges) {
merges.push_back({JsonFastTokenizer::TokenBytesToString(std::get<0>(val)), JsonFastTokenizer::TokenBytesToString(std::get<1>(val))});
}
}
const char token_sub[] = "Tokenizer";
model_name_ = config.tokenizer_class_.substr(0, config.tokenizer_class_.find(token_sub));
json_conf_.name_ = model_name_.c_str();
json_conf_.bos_token_ = config.bos_token_.c_str();
json_conf_.eos_token_ = config.eos_token_.c_str();
json_conf_.unk_token_ = config.unk_token_.c_str();
json_conf_.pad_token_ = config.pad_token_.c_str();
// re-bind the configuration object
bpe_conf_ = json_conf_;
OrtxStatus status;
if (tiktoken_){
status = bbpe_tokenizer_->Load(vocab,
merges,
bpe_conf_.get().GetSpecialTokens().c_str(),
false);
module_ifs >> tok_json;
} else {
ifs >> tok_json;
// doesn't work for json with nested objects
// auto decoders_node = tok_json.find("/decoder/decoders"_json_pointer);
bool has_decoders_node = false;
auto decoders_node = tok_json.end();
auto decoder_node = tok_json.find("decoder");
if (decoder_node != tok_json.end()) {
decoders_node = decoder_node->find("decoders");
if (decoders_node != decoder_node->end()) {
has_decoders_node = true;
}
}
if (has_decoders_node && decoders_node->is_array()) {
for(auto step = decoders_node->begin(); step != decoders_node->end(); ++step) {
std::string type = step->value("type", "");
if (type == "Replace") {
std::string target = step->value("/pattern/String"_json_pointer, "");
if (target == "\xe2\x96\x81") {
json_conf_.spm_model_ = true;
break;
}
}
}
}
auto model_node = tok_json.find("model");
if (model_node == tok_json.end()) {
return OrtxStatus(kOrtxErrorCorruptData, "Failed to get model node from tokenizer.json");
}
bbpe_tokenizer_ = std::make_unique<BpeModel>();
status = bbpe_tokenizer_->Load(*model_node,
bpe_conf_.get().GetSpecialTokens().c_str(),
bpe_conf_.get().spm_model_);
}
OrtxStatus JsonFastTokenizer::LoadAddedTokens(const json& tok_json, const ort_extensions::bpe::TokenJsonConfig& config) {
auto added_tokens = tok_json.find("added_tokens");
if (added_tokens != tok_json.end()) {
for (const auto& token : *added_tokens) {
@ -829,18 +684,30 @@ OrtxStatus JsonFastTokenizer::Load(const ort_extensions::bpe::TokenJsonConfig& c
}
}
if (!status.IsOk()) {
return status;
}
return bbpe_tokenizer_->LoadAddedTokens(added_tokens_);
}
status = bbpe_tokenizer_->LoadAddedTokens(added_tokens_);
if (!status.IsOk()) {
return status;
// Helper methods (to be added to the class declaration)
bool JsonFastTokenizer::CheckForSpmModel(const json& tok_json) {
auto decoder_node = tok_json.find("decoder");
if (decoder_node != tok_json.end()) {
auto decoders_node = decoder_node->find("decoders");
if (decoders_node != decoder_node->end() && decoders_node->is_array()) {
for (const auto& step : *decoders_node) {
std::string type = step.value("type", "");
if (type == "Replace") {
std::string target = step.value("/pattern/String"_json_pointer, "");
if (target == spm_escaped_space) {
return true;
}
}
}
}
}
return false;
}
add_bos_token_ = config.add_bos_token_;
add_eos_token_ = config.add_eos_token_;
// add_bos_token is default as false, we need to check post_processor json to see if it is true
void JsonFastTokenizer::UpdateTokenAdditionFlags(const json& tok_json, const ort_extensions::bpe::TokenJsonConfig& config) {
if (!config.add_bos_token_ && !config.bos_token_.empty()) {
auto post_processor = tok_json.find("post_processor");
if (post_processor != tok_json.end()) {
@ -853,6 +720,167 @@ OrtxStatus JsonFastTokenizer::Load(const ort_extensions::bpe::TokenJsonConfig& c
}
}
}
}
OrtxStatus JsonFastTokenizer::Load(const ort_extensions::bpe::TokenJsonConfig& config) {
std::string voc_file = config.GetVocabDataFile();
std::ifstream ifs = path(voc_file).open();
if (!ifs.is_open()) {
return OrtxStatus(kOrtxErrorInvalidFile, "Failed to open json file: " + voc_file);
}
nlohmann::json tok_json;
ifs >> tok_json;
const char token_sub[] = "Tokenizer";
model_name_ = config.tokenizer_class_.substr(0, config.tokenizer_class_.find(token_sub));
json_conf_.name_ = model_name_.c_str();
json_conf_.bos_token_ = config.bos_token_.c_str();
json_conf_.eos_token_ = config.eos_token_.c_str();
json_conf_.unk_token_ = config.unk_token_.c_str();
json_conf_.pad_token_ = config.pad_token_.c_str();
// re-bind the configuration object
bpe_conf_ = json_conf_;
// Check for SPM model
json_conf_.spm_model_ = CheckForSpmModel(tok_json);
auto model_node = tok_json.find("model");
if (model_node == tok_json.end()) {
return OrtxStatus(kOrtxErrorCorruptData, "Failed to get model node from tokenizer.json");
}
bbpe_tokenizer_ = std::make_unique<BpeModel>();
OrtxStatus status = bbpe_tokenizer_->Load(*model_node,
bpe_conf_.get().GetSpecialTokens().c_str(),
bpe_conf_.get().spm_model_);
if (!status.IsOk()) {
return status;
}
status = LoadAddedTokens(tok_json, config);
if (!status.IsOk()) {
return status;
}
add_bos_token_ = config.add_bos_token_;
add_eos_token_ = config.add_eos_token_;
UpdateTokenAdditionFlags(tok_json, config);
return status;
}
OrtxStatus JsonFastTokenizer::LoadTikTokenBase64(const ort_extensions::bpe::TokenJsonConfig& config) {
std::string voc_file = config.GetVocabDataFile();
std::ifstream ifs = path(voc_file).open();
if (!ifs.is_open()) {
return OrtxStatus(kOrtxErrorInvalidFile, "Failed to open json file: " + voc_file);
}
std::unordered_map<std::string, uint32_t> vocab;
std::vector<std::pair<std::string, std::string>> merges;
std::unordered_map<std::vector<uint8_t>, uint32_t, VectorHash, VectorEqual> bpe_ranks;
std::string line;
while (std::getline(ifs, line)) {
if (!line.empty()) {
std::istringstream lineStream(line);
std::string token;
uint32_t rank;
while (lineStream >> token >> rank) {
// Decode base64 token and convert rank to int
std::vector<uint8_t> decoded_token;
base64_decode(token, decoded_token);
// Store bpe token and rank
bpe_ranks[decoded_token] = rank;
}
}
}
std::vector<std::tuple<std::vector<uint8_t>, std::vector<uint8_t>, uint32_t>> byte_merges;
bbpe_tokenizer_ = std::make_unique<BpeModel>();
for (const auto& item : bpe_ranks) {
std::vector<uint8_t> token = item.first;
uint32_t rank = item.second;
vocab[JsonFastTokenizer::TokenBytesToString(token)] = rank;
if (token.size() == 1) {
continue;
}
std::vector<std::tuple<std::vector<uint8_t>, std::vector<uint8_t>, uint32_t>> local;
for (size_t index = 1; index < token.size(); index++) {
std::vector<uint8_t> piece_l(token.begin(), token.begin() + index);
std::vector<uint8_t> piece_r(token.begin() + index, token.end());
if (bpe_ranks.count(piece_l) && bpe_ranks.count(piece_r)) {
local.emplace_back(piece_l, piece_r, rank);
}
}
auto compare_bpe_tuples = [&](const std::tuple<std::vector<uint8_t>, std::vector<uint8_t>, uint32_t>& a,
const std::tuple<std::vector<uint8_t>, std::vector<uint8_t>, uint32_t>& b) {
// Compare comparator based on the ranks in bpe_ranks
return bpe_ranks[std::get<0>(a)] < bpe_ranks[std::get<0>(b)] ||
(bpe_ranks[std::get<0>(a)] == bpe_ranks[std::get<0>(b)] && bpe_ranks[std::get<1>(a)] < bpe_ranks[std::get<1>(b)]);
};
std::sort(local.begin(), local.end(), compare_bpe_tuples);
byte_merges.insert(byte_merges.end(), local.begin(), local.end());
}
// Custom comparator that compares the third element of the tuples
auto compare_merge_tuples = [&](const std::tuple<std::vector<uint8_t>, std::vector<uint8_t>, uint32_t>& a,
const std::tuple<std::vector<uint8_t>, std::vector<uint8_t>, uint32_t>& b) {
return std::get<2>(a) < std::get<2>(b);
};
std::sort(byte_merges.begin(), byte_merges.end(), compare_merge_tuples);
// Populate merges
for (auto& val : byte_merges) {
merges.push_back({JsonFastTokenizer::TokenBytesToString(std::get<0>(val)), JsonFastTokenizer::TokenBytesToString(std::get<1>(val))});
}
const char token_sub[] = "Tokenizer";
model_name_ = config.tokenizer_class_.substr(0, config.tokenizer_class_.find(token_sub));
json_conf_.name_ = model_name_.c_str();
json_conf_.bos_token_ = config.bos_token_.c_str();
json_conf_.eos_token_ = config.eos_token_.c_str();
json_conf_.unk_token_ = config.unk_token_.c_str();
json_conf_.pad_token_ = config.pad_token_.c_str();
// re-bind the configuration object
bpe_conf_ = json_conf_;
OrtxStatus status = bbpe_tokenizer_->Load(vocab,
merges,
bpe_conf_.get().GetSpecialTokens().c_str(),
false);
if (!status.IsOk()) {
return status;
}
std::string module_file = config.GetTikTokenModuleFile();
std::ifstream module_ifs = path(module_file).open();
if (!module_ifs.is_open()) {
return OrtxStatus(kOrtxErrorInvalidFile, "Failed to open module file: " + module_file);
}
nlohmann::json tok_json;
module_ifs >> tok_json;
status = LoadAddedTokens(tok_json, config);
if (!status.IsOk()) {
return status;
}
add_bos_token_ = config.add_bos_token_;
add_eos_token_ = config.add_eos_token_;
UpdateTokenAdditionFlags(tok_json, config);
return status;
}

Просмотреть файл

@ -3,15 +3,18 @@
#pragma once
#include "ocos.h"
#include "ustring.h"
#include <list>
#include <string>
#include <vector>
#include <functional>
#include "bpe_types.h"
#include "ortx_tokenizer.h"
#include "ext_status.h"
#include "op_def_struct.h"
#include "nlohmann/json_fwd.hpp"
#include "tokjson_types.h"
#include "ustring.h"
struct BpeModelConf {
const char* name_{"GPT2"}; // this name may be overridden by the tokenizer's attribute.
@ -25,6 +28,7 @@ struct BpeModelConf {
};
struct KernelBpeTokenizer {
using json = nlohmann::json;
KernelBpeTokenizer(const BpeModelConf& conf);
OrtStatusPtr OnModelAttach(const OrtApi& api, const OrtKernelInfo& info);
@ -113,10 +117,11 @@ class JsonFastTokenizer : public KernelBpeTokenizer {
public:
JsonFastTokenizer();
OrtxStatus Load(const ort_extensions::bpe::TokenJsonConfig& config);
OrtxStatus LoadTikTokenBase64(const ort_extensions::bpe::TokenJsonConfig& config);
OrtxStatus Compute(const ortc::Tensor<std::string>& input,
ortc::Tensor<int64_t>& tokenize_output,
std::optional<ortc::Tensor<int64_t>*> attention_mask,
std::optional<ortc::Tensor<int64_t>*> offset_mapping) const;
std::optional<ortc::Tensor<int64_t>*> attention_mask = std::nullopt,
std::optional<ortc::Tensor<int64_t>*> offset_mapping = std::nullopt) const;
public:
const auto& GetAddedTokens() const { return added_tokens_; }
@ -126,6 +131,10 @@ class JsonFastTokenizer : public KernelBpeTokenizer {
private:
std::string TokenBytesToString(std::vector<uint8_t>& bytes);
// template functions to avoid including the huge json header file
bool CheckForSpmModel(const json& tok_json);
void UpdateTokenAdditionFlags(const json& tok_json, const ort_extensions::bpe::TokenJsonConfig& config);
OrtxStatus LoadAddedTokens(const json& tok_json, const ort_extensions::bpe::TokenJsonConfig& config);
BpeModelConf json_conf_;
std::vector<ort_extensions::bpe::AddedToken> added_tokens_;

Просмотреть файл

@ -5,7 +5,7 @@
#include "bpe_kernels.h"
#include "bpe_decoder.hpp"
#include "bpe_json.hpp"
#include "bpe_jsoncfg.hpp"
#include "bpe_tokenizer.hpp"
namespace ort_extensions {
@ -112,7 +112,7 @@ class BpeStreamingDecoder : public KernelBpeDecoder {
char buf[3] = {piece[3], piece[4], 0}; // something like <0x20>
token = {static_cast<char>(strtol(buf, NULL, 16))};
} else {
token = ReplaceAll(piece, spm_underscore, " ");
token = ReplaceAll(piece, std::string(ort_extensions::spm_escaped_space), " ");
}
if (!token.empty() && token[0] == ' ' && f_special_last && add_dummy_prefix_) {

Просмотреть файл

@ -18,7 +18,7 @@
#include "nlohmann/json.hpp"
#include "bpe_utils.hpp"
#include "trietree.hpp"
#include "bpe_types.h"
#include "tokjson_types.h"
namespace ort_extensions {

Просмотреть файл

@ -532,7 +532,7 @@ class TokenWithRegularExp {
try {
return RegexMatchSTD(ustring(regex_expr));
} catch (const std::exception& ex) {
} catch (const std::exception& /* ex */) {
std::string part1 = "Regex '";
std::string part2 = "' not supported!";
throw std::runtime_error(part1 + regex_expr + part2);

Просмотреть файл

@ -4,7 +4,6 @@
#pragma once
#include "ocos.h"
#include "ortx_common.h"
#include "string_utils.h"
#include "string_tensor.h"
#include "sentencepiece_processor.h"

Просмотреть файл

@ -8,7 +8,6 @@
#include "string_tensor.h"
#include "base64.h"
#include "narrow.h"
#include "ortx_common.h"
OrtStatusPtr KernelSentencepieceTokenizer::OnModelAttach(const OrtApi& api, const OrtKernelInfo& info) {
std::string model_as_string;

Просмотреть файл

@ -24,4 +24,6 @@ struct AddedToken final {
class TokenJsonConfig; // forward declaration
} // namespace bpe
constexpr std::string_view spm_escaped_space = "\xE2\x96\x81";
} // namespace ort_extensions

Просмотреть файл

@ -2,7 +2,6 @@
// Licensed under the MIT License.
#pragma once
#include "ocos.h"
#include "ortx_common.h"
#include "narrow.h"
#include <vector>

Просмотреть файл

@ -12,12 +12,13 @@
namespace ort_extensions {
template <typename CharT, typename ValueT = int>
template <typename CharT, typename ValueT = int, int invalid_id = -1>
class TrieTree {
public:
static constexpr int kMaxTokenLength_ = 128;
static constexpr ValueT kInvalidId_ = static_cast<ValueT>(invalid_id);
TrieTree(CharT ch = 0, ValueT invalid_id = -1) : ch_(ch), invalid_id_(invalid_id) {}
TrieTree(CharT ch = 0) : ch_(ch), value_(std::nullopt) {}
void Add(const std::basic_string<CharT>& key, int idx = 0,
const std::optional<ValueT>& value = std::nullopt) noexcept {
@ -36,11 +37,16 @@ class TrieTree {
}
}
const TrieTree* Find(CharT ch) const {
auto it = to_.find(ch);
return it != to_.end() ? it->second.get() : nullptr;
}
ValueT FindLongest(const std::basic_string<CharT>& key, size_t& idx) const noexcept {
const TrieTree* u = this;
CharT ch = key[idx];
ValueT tok_id = invalid_id_;
ValueT tok_id = invalid_id;
size_t idx_end = idx;
while (u->to_.count(ch)) {
u = u->to_.at(ch).get();
@ -70,7 +76,7 @@ class TrieTree {
auto ch = input[tok_idx];
size_t tok_len = 0;
size_t idx_end = tok_idx;
ValueT tok_id = invalid_id_;
ValueT tok_id = invalid_id;
// try to match a longest token
while (u->to_.count(ch)) {
@ -89,7 +95,7 @@ class TrieTree {
}
tok_idx += 1;
if (tok_id == invalid_id_) {
if (tok_id == invalid_id) {
if (tok_idx < input.length()) {
continue;
} else {
@ -102,9 +108,9 @@ class TrieTree {
tok_len = idx_end - token_begin_idx;
if (token_begin_idx > seg_idx || tok_len == 0) {
tokens.emplace_back(std::basic_string_view<CharT>(input.data() + seg_idx, token_begin_idx - seg_idx),
invalid_id_);
invalid_id);
}
if (tok_id != invalid_id_) {
if (tok_id != invalid_id) {
tokens.emplace_back(std::basic_string_view<CharT>(input.data() + token_begin_idx, tok_len), tok_id);
tok_idx = idx_end;
}
@ -116,11 +122,18 @@ class TrieTree {
return 0;
}
bool HasValue() const {
return value_.has_value();
}
ValueT Value() const {
return value_.value();
}
private:
std::map<CharT, std::unique_ptr<TrieTree>> to_;
std::unordered_map<CharT, std::unique_ptr<TrieTree>> to_;
std::optional<ValueT> value_;
const CharT ch_;
const ValueT invalid_id_;
};
} // namespace ort_extensions

Просмотреть файл

@ -0,0 +1,457 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
// The implementation is inspired by llama.cpp ugm tokenizer and huggingface FastTokenizer
#pragma once
#include <map>
#include <set>
#include <list>
#include <string>
#include <vector>
#include <cfloat>
#include <functional>
#include <unordered_map>
#include "ortx_tokenizer.h"
#include "ext_status.h"
#include "op_def_struct.h"
#include "base64.h"
#include "ustring.h"
#include "nlohmann/json.hpp"
#include "trietree.hpp"
#include "bpe_jsoncfg.hpp"
namespace ort_extensions {
struct SpmUgmTokenizer {
using json = nlohmann::json;
using VocabTrieTree = ort_extensions::TrieTree<char, extTokenId_t, -1>;
using Vocab = std::unordered_map<std::string, std::tuple<extTokenId_t, double>>;
SpmUgmTokenizer() = default;
OrtxStatus LoadSpecialTokens(const json& token_json) {
auto special_tokens = token_json.find("added_tokens");
if (special_tokens != token_json.end()) {
for (const auto& token : special_tokens->items()) {
auto id = token.value()["id"].get<extTokenId_t>();
bool is_special = token.value()["special"].get<bool>();
if (is_special) {
special_token_ids_.insert(id);
}
auto word = token.value()["content"].get<std::string>();
user_defined_token_matcher_.Add(word, 0, id);
}
}
return {};
}
OrtxStatus LoadCharsMap(const json& j_vocab) {
auto normalizer = j_vocab.find("normalizer");
if (normalizer != j_vocab.end()) {
auto iter = normalizer->find("precompiled_charsmap");
if (iter != normalizer->end()) {
auto charsmap = iter->get<std::string>();
if (!base64_decode(charsmap, charsmap_data_)) {
return OrtxStatus(extError_t::kOrtxErrorCorruptData, "Failed to decode charsmap.");
}
// std::cout << "charsmap size: " << charsmap_data_.size() << std::endl;
// for (size_t i = 0; i < charsmap_data_.size() && i < 100; ++i) {
// std::cout << int(charsmap_data_[i]) << " ";
// }
size_t charsmap_offset = 0;
// First four bytes of precompiled_charsmap contains length of binary
// blob containing XOR-compressed compact double array (XCDA) entries
uint32_t xcda_blob_size = *(const uint32_t*)&charsmap_data_[0];
charsmap_offset += sizeof(xcda_blob_size);
if (xcda_blob_size + charsmap_offset >= charsmap_data_.size()) {
return OrtxStatus(extError_t::kOrtxErrorCorruptData, "Index out of array bounds in precompiled charsmap!");
}
// Next xcda_blob_size bytes contain entries of XOR-compressed compact
// double array (XCDA). Each entry is bit-packed into a 32-bit integer.
xcda_array_ = (const uint32_t*)&charsmap_data_[charsmap_offset];
xcda_array_size_ = xcda_blob_size / sizeof(uint32_t);
charsmap_offset += xcda_blob_size;
// Remaining bytes of precompiled charsmap contain null-terminated
// replacement strings for prefixes matched by the XCDA.
prefix_replacements_ = reinterpret_cast<const char*>(&charsmap_data_[charsmap_offset]);
prefix_replacements_size_ = charsmap_data_.size() - charsmap_offset;
}
}
return {};
}
OrtxStatus LoadConfig(const json& config) {
auto pretokenizer_node = config.find("pretokenizer");
if (pretokenizer_node != config.end()) {
auto pretokenizers_node = pretokenizer_node->find("pretokenizers");
if (pretokenizers_node != pretokenizer_node->end()) {
for (const auto& pretokenizer : pretokenizers_node->items()) {
if (pretokenizer.value().contains("type")) {
auto type = pretokenizer.value()["type"].get<std::string>();
if (type == "Metaspace") {
tokenizer_escape_whitespaces_ = true;
}
}
if (pretokenizer.value().contains("add_prefix_space")) {
tokenizer_add_space_prefix_ = pretokenizer.value()["add_prefix_space"].get<bool>();
}
}
}
}
return {};
}
OrtxStatus Load(const bpe::TokenJsonConfig& config) {
ortx::path vocab_path(config.GetVocabDataFile());
if (!vocab_path.exists()) {
return OrtxStatus(extError_t::kOrtxErrorInvalidArgument, "Vocabulary file does not exist.");
}
auto ifs = vocab_path.open();
if (!ifs.is_open()) {
return OrtxStatus(extError_t::kOrtxErrorInvalidArgument, "Failed to open vocabulary file.");
}
nlohmann::json j_vocab = json::parse(ifs, nullptr, false, true);
if (j_vocab.is_discarded()) {
return OrtxStatus(extError_t::kOrtxErrorInvalidArgument, "Failed to parse vocabulary file.");
}
OrtxStatus status = LoadConfig(j_vocab);
if (!status.IsOk()) {
return status;
}
status = LoadCharsMap(j_vocab);
if (!status.IsOk()) {
return status;
}
status = LoadSpecialTokens(j_vocab);
if (!status.IsOk()) {
return status;
}
auto model_node = j_vocab.find("model");
if (model_node == j_vocab.end()) {
return OrtxStatus(extError_t::kOrtxErrorInvalidArgument, "Model node not found in vocabulary file.");
}
auto unk_id_iter = model_node->find("unk_id");
if (unk_id_iter != model_node->end()) {
special_unk_id_ = unk_id_iter->get<extTokenId_t>();
}
auto vocab_node = model_node->find("vocab");
if (vocab_node == model_node->end()) {
return OrtxStatus(extError_t::kOrtxErrorInvalidArgument, "Vocabulary not found in model node.");
}
extTokenId_t id = 0;
for (const auto& entry : vocab_node->items()) {
auto tkn = entry.value()[0].get<std::string>();
auto score = entry.value()[1].get<double>();
vocab_[tkn] = std::make_tuple(id++, score);
}
scores_.resize(id);
double min_score = std::numeric_limits<double>::max();
for (const auto& entry : vocab_) {
scores_[std::get<0>(entry.second)] = std::get<1>(entry.second);
token_matcher_.Add(entry.first, 0, std::get<0>(entry.second));
min_score = std::min<double>(min_score, std::get<1>(entry.second));
}
unknown_token_score_ = min_score - unknown_token_score_penalty_;
return status;
}
extTokenId_t GetTokenId(const std::string& token) const {
auto iter = vocab_.find(token);
if (iter == vocab_.end()) {
return special_unk_id_;
}
return std::get<0>(iter->second);
}
OrtxStatus Compute(const ortc::Tensor<std::string>& input, ortc::Tensor<int64_t>& tokenize_output) const {
if (input.Shape().size() != 1) {
return OrtxStatus(extError_t::kOrtxErrorInvalidArgument, "Input tensor must have rank 1.");
}
std::string normalized;
Normalize(input.AsScalar(), &normalized);
size_t input_len = normalized.size();
if (input_len == 0) {
return {};
}
std::vector<struct BestTokenization> tokenization_results(input_len + 1, {0, -DBL_MAX, special_unk_id_});
tokenization_results[0] = {0, 0, special_unk_id_};
for (size_t input_offset = 0; input_offset < input_len;) {
size_t prefix_offset = input_offset;
size_t n_utf8_code_units = std::min<size_t>(ustring::UTF8Len(normalized[input_offset]), input_len - input_offset);
bool single_codepoint_token_found = false;
const struct BestTokenization& current_best = tokenization_results[input_offset];
auto node = token_matcher_.Find(normalized[prefix_offset++]);
while (prefix_offset <= input_len && node != NULL) {
if (node->HasValue()) {
if (prefix_offset - input_offset == n_utf8_code_units) {
single_codepoint_token_found = true;
}
extTokenId_t token_id = node->Value();
const auto& token_data = scores_[token_id];
const double token_score = special_token_ids_.count(token_id) > 0 ? 0.0 : token_data;
const double challenger_score = current_best.score_sum + token_score;
struct BestTokenization& current_champ = tokenization_results[prefix_offset];
if (challenger_score > current_champ.score_sum) {
struct BestTokenization challenger = {input_offset, (float)challenger_score, token_id};
current_champ = challenger;
}
}
node = node->Find(normalized[prefix_offset++]);
}
if (!single_codepoint_token_found) {
const double challenger_score = current_best.score_sum + unknown_token_score_;
prefix_offset = input_offset + n_utf8_code_units;
struct BestTokenization& current_champ = tokenization_results[prefix_offset];
if (challenger_score > current_champ.score_sum) {
struct BestTokenization challenger = {input_offset, (float)challenger_score, special_unk_id_};
current_champ = challenger;
}
}
input_offset += n_utf8_code_units;
}
std::vector<extTokenId_t> output;
output.reserve(input_len);
bool is_prev_unknown = false;
for (struct BestTokenization& tokenization = tokenization_results[input_len];;
tokenization = tokenization_results[tokenization.input_offset]) {
bool is_unknown = tokenization.token_id == special_unk_id_;
if (!(is_prev_unknown && is_unknown)) {
output.push_back(tokenization.token_id);
}
if (tokenization.input_offset == 0) {
break;
}
is_prev_unknown = is_unknown;
}
bool add_bos = GetTokenId(bos_token_) != special_unk_id_;
bool add_eos = GetTokenId(eos_token_) != special_unk_id_;
auto output_size = static_cast<int64_t>(output.size());
int64_t* id_output = tokenize_output.Allocate({output_size + add_bos + add_eos});
if (add_bos) {
*id_output = GetTokenId(bos_token_);
id_output++;
}
std::transform(output.begin(), output.end(), id_output, [](extTokenId_t id) { return static_cast<int64_t>(id); });
std::reverse(id_output, id_output + output_size);
if (add_eos) {
*(id_output + output_size) = GetTokenId(eos_token_);
}
return {};
}
private:
struct NormalizationResult {
const char* normalized;
size_t normalized_len;
size_t consumed_input;
};
void Normalize(const std::string& input, std::string* normalized) const {
normalized->clear();
normalized->reserve(input.size() * 3);
const std::string space = tokenizer_escape_whitespaces_ ? std::string(spm_escaped_space) : " ";
bool shall_prepend_space = !tokenizer_treat_whitespace_as_suffix_ && tokenizer_add_space_prefix_;
bool shall_append_space = tokenizer_treat_whitespace_as_suffix_ && tokenizer_add_space_prefix_;
bool shall_merge_spaces = tokenizer_remove_extra_whitespaces_;
bool is_space_prepended = false;
bool processing_non_ws = false;
size_t input_len = input.size();
for (size_t input_offset = 0; input_offset < input_len;) {
auto norm_res = NormalizePrefix(input, input_offset);
for (size_t i = 0; i < norm_res.normalized_len; i++) {
char c = norm_res.normalized[i];
if (c != ' ') {
if (!processing_non_ws) {
processing_non_ws = true;
if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
normalized->append(space);
is_space_prepended = true;
}
}
normalized->push_back(c);
} else {
if (processing_non_ws) {
processing_non_ws = false;
}
if (!shall_merge_spaces) {
normalized->append(space);
}
}
}
input_offset += norm_res.consumed_input;
}
if (shall_append_space) {
normalized->append(space);
}
}
/*
* This structure is a view wrapper for XOR-compressed double array (XCDA)
* See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
* Each bit-packed entry contains:
* - BASE array value in bits 10-30
* - LCHECK array value in bits 0-7
* - LEAF array value in bit 9
* Entries containing indexes of replacement sequences have set bit 31
*/
struct XcdaArrayView {
public:
XcdaArrayView(const uint32_t* xcda_array, size_t xcda_array_size)
: xcda_array_(xcda_array), xcda_array_size_(xcda_array_size) {}
uint32_t GetBase(size_t index) {
uint32_t packed_node = GetNode(index);
return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
}
uint32_t GetLcheck(size_t index) {
uint32_t packed_node = GetNode(index);
return packed_node & ((1U << 31) | 0xff);
}
bool IsLeaf(size_t index) {
uint32_t packed_node = GetNode(index);
return (packed_node >> 8) & 1;
}
uint32_t GetValue(size_t index) {
uint32_t packed_node = GetNode(index);
return packed_node & ((1U << 31) - 1);
}
private:
uint32_t GetNode(size_t index) {
if (index > xcda_array_size_) {
ORTX_CXX_API_THROW("[UgmTok]Index out of array bounds in XCDA array!", ORT_RUNTIME_EXCEPTION);
}
return xcda_array_[index];
}
const uint32_t* xcda_array_;
size_t xcda_array_size_;
};
struct NormalizationResult NormalizePrefix(const std::string& input, size_t input_offset) const {
if (input_offset == input.size()) {
return {&input[input_offset], 0, 0};
}
std::string prefix = input.substr(input_offset);
size_t prefix_off = 0;
auto user_defined_token_match = user_defined_token_matcher_.FindLongest(prefix, prefix_off);
if (user_defined_token_match != user_defined_token_matcher_.kInvalidId_) {
return {&input[input_offset], prefix_off + input_offset, prefix_off + input_offset};
}
size_t longest_prefix_length = 0;
size_t longest_prefix_offset = 0;
if (xcda_array_size_ > 0) {
XcdaArrayView xcda_view(xcda_array_, xcda_array_size_);
uint32_t node_index = 0;
node_index = xcda_view.GetBase(node_index);
for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
unsigned char c = input[prefix_offset];
if (c == 0) {
break;
}
node_index ^= c;
if (xcda_view.GetLcheck(node_index) != c) {
break;
}
bool is_leaf = xcda_view.IsLeaf(node_index);
node_index ^= xcda_view.GetBase(node_index);
if (is_leaf) {
longest_prefix_length = prefix_offset - input_offset + 1;
longest_prefix_offset = xcda_view.GetValue(node_index);
}
}
}
if (longest_prefix_length > 0) {
if (longest_prefix_offset >= prefix_replacements_size_) {
ORTX_CXX_API_THROW("[UgmTok]Index out of array bounds in precompiled charsmap!", ORT_RUNTIME_EXCEPTION);
}
const char* prefix_replacement = &prefix_replacements_[longest_prefix_offset];
return {prefix_replacement, strlen(prefix_replacement), longest_prefix_length};
} else {
// if yes, return this sequence unmodified
size_t prefix_offset = input_offset + ustring::UTF8Len(input[input_offset]);
if (prefix_offset <= input.size()) {
return {&input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset};
} else {
return {"\xEF\xBF\xBD", 3, 1};
}
}
}
// escaped space symbol - U+2581 (Lower One Eighth Block)
static constexpr double unknown_token_score_penalty_ = 10.0;
std::vector<uint8_t> charsmap_data_;
const char* prefix_replacements_ = NULL;
size_t prefix_replacements_size_ = 0;
const uint32_t* xcda_array_ = NULL;
size_t xcda_array_size_ = 0;
VocabTrieTree user_defined_token_matcher_;
struct BestTokenization {
size_t input_offset;
double score_sum;
extTokenId_t token_id;
};
extTokenId_t special_unk_id_ = -1;
double unknown_token_score_;
Vocab vocab_;
std::vector<double> scores_;
std::set<extTokenId_t> special_token_ids_;
VocabTrieTree token_matcher_;
public:
bool tokenizer_escape_whitespaces_ = true;
bool tokenizer_treat_whitespace_as_suffix_ = false;
bool tokenizer_add_space_prefix_ = true;
bool tokenizer_remove_extra_whitespaces_ = true;
std::string bos_token_ = "<s>";
std::string eos_token_ = "</s>";
std::string pad_token_ = "<pad>";
std::string unk_token_ = "<unk>";
};
} // namespace ort_extensions

Просмотреть файл

@ -1,41 +1,51 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "bpe_kernels.h"
#include "bpe_tokenizer.hpp"
#include "bpe_decoder.hpp"
#include "ugm_kernels.hpp"
#include "tokenizer_impl.h"
using namespace ort_extensions;
TokenizerImpl::TokenizerImpl() : OrtxObjectImpl(extObjectKind_t::kOrtxKindTokenizer) {};
namespace ort_extensions {
TokenizerImpl::TokenizerImpl()
: OrtxObjectImpl(extObjectKind_t::kOrtxKindTokenizer) {};
TokenizerImpl::~TokenizerImpl() {};
OrtxStatus TokenizerImpl::Load(const std::string& dir) {
OrtxStatus TokenizerImpl::Load(const std::string& tok_path) {
tok_config_ = std::make_shared<ort_extensions::bpe::TokenJsonConfig>();
auto status = tok_config_->Load(dir);
auto status = tok_config_->Load(tok_path);
if (!status.IsOk()) {
return status;
}
auto vocab_file_path = path(dir) / "tokenizer.json";
std::ifstream vocab_fs = vocab_file_path.open();
tokenizer_ = std::make_unique<JsonFastTokenizer>();
if (!vocab_fs.is_open()) {
// No tokenizer.json file present; use TikToken tokenizer
tokenizer_->tiktoken_ = true;
// load the tokenizer from a config
status = tokenizer_->Load(*tok_config_);
} else {
// load the tokenizer from a config
status = tokenizer_->Load(*tok_config_);
if (tok_config_->tokenizer_class_.empty()) {
auto tokenizer = std::make_unique<SpmUgmTokenizer>();
status = tokenizer->Load(*tok_config_);
if (status.IsOk()) {
detokenizer_ = std::make_unique<BpeStreamingDecoder>();
status = detokenizer_->Load(tok_config_, *tokenizer_);
tokenizer_ = std::move(tokenizer);
}
return status;
}
auto vocab_file_path = ortx::path(tok_config_->GetVocabDataFile());
auto tokenizer = std::make_unique<JsonFastTokenizer>();
// vocab file is checked in TokenJsonConfig::Load
auto fx_load = vocab_file_path.extension() == ".json"?
&JsonFastTokenizer::Load: &JsonFastTokenizer::LoadTikTokenBase64;
status = (tokenizer.get()->*fx_load)(*tok_config_);
if (status.IsOk()) {
detokenizer_ = std::make_unique<BpeStreamingDecoder>();
status = detokenizer_->Load(tok_config_, *tokenizer);
}
if (status.IsOk()) {
tokenizer_ = std::move(tokenizer);
}
return status;
@ -46,7 +56,10 @@ OrtxStatus TokenizerImpl::BatchEncode(const std::vector<std::string_view>& input
for (const auto& s : input) {
ortc::Tensor<int64_t> ts_output(&CppAllocator::Instance());
ortc::Tensor<std::string> ts_input = ortc::Tensor<std::string>(std::vector<std::string>{std::string(s)});
OrtxStatus status = tokenizer_->Compute(ts_input, ts_output, std::nullopt, std::nullopt);
OrtxStatus status = std::visit([&](auto& tokenizer) {
return tokenizer->Compute(ts_input, ts_output);
}, tokenizer_);
if (!status.IsOk()) {
return status;
@ -90,7 +103,7 @@ static std::map<std::string, std::string> LANGUAGES = {
{"ro", "romanian"}, {"da", "danish"}, {"hu", "hungarian"}, {"ta", "tamil"}, {"no", "norwegian"},
{"th", "thai"}, {"ur", "urdu"}, {"hr", "croatian"}, {"bg", "bulgarian"}, {"lt", "lithuanian"},
{"la", "latin"}, {"mi", "maori"}, {"ml", "malayalam"}, {"cy", "welsh"}, {"sk", "slovak"},
{"te", "telugu"}, {"fa", "persian"}, {"lv", "latvian"}, {"bn", "bengali"}, {"sr", "serbian"},
{"te", "telugu"}, {"fa", "persian"}, {"lv", "latvian"}, {"bn", "bangla"}, {"sr", "serbian"},
{"az", "azerbaijani"}, {"sl", "slovenian"}, {"kn", "kannada"}, {"et", "estonian"}, {"mk", "macedonian"},
{"br", "breton"}, {"eu", "basque"}, {"is", "icelandic"}, {"hy", "armenian"}, {"ne", "nepali"},
{"mn", "mongolian"}, {"bs", "bosnian"}, {"kk", "kazakh"}, {"sq", "albanian"}, {"sw", "swahili"},
@ -105,14 +118,14 @@ static std::map<std::string, std::string> LANGUAGES = {
OrtxStatus TokenizerImpl::GetDecoderPromptIds(size_t batch_size, const char* lang, const char* task, int no_timestamps,
std::vector<std::vector<extTokenId_t>>& t_ids) const {
if (tokenizer_ == nullptr) {
// since it was only supported by Whisper model, which is bpe only.
if (!std::holds_alternative<bpe_tokenizer_t>(tokenizer_)) {
return OrtxStatus(kOrtxErrorInvalidArgument, "Tokenizer is not loaded");
}
// since it was only supported by Whisper model, should we check it here?
auto translate_token_id = tokenizer_->GetTokenId("<|translate|>");
auto transcribe_token_id = tokenizer_->GetTokenId("<|transcribe|>");
auto notimestamps_token_id = tokenizer_->GetTokenId("<|notimestamps|>");
auto translate_token_id = std::get<bpe_tokenizer_t>(tokenizer_)->GetTokenId("<|translate|>");
auto transcribe_token_id = std::get<bpe_tokenizer_t>(tokenizer_)->GetTokenId("<|transcribe|>");
auto notimestamps_token_id = std::get<bpe_tokenizer_t>(tokenizer_)->GetTokenId("<|notimestamps|>");
std::vector<extTokenId_t> ids;
ids.reserve(4);
if (lang != nullptr) {
@ -122,7 +135,7 @@ OrtxStatus TokenizerImpl::GetDecoderPromptIds(size_t batch_size, const char* lan
}
std::string lang_token = "<|" + lang_str->first + "|>";
ids.push_back(tokenizer_->GetTokenId(lang_token));
ids.push_back(std::get<bpe_tokenizer_t>(tokenizer_)->GetTokenId(lang_token));
}
if (task != nullptr) {
@ -142,3 +155,5 @@ OrtxStatus TokenizerImpl::GetDecoderPromptIds(size_t batch_size, const char* lan
t_ids.resize(batch_size, ids);
return {};
}
} // namespace ort_extensions

Просмотреть файл

@ -3,9 +3,11 @@
#pragma once
#include "ortx_tokenizer.h"
#include <variant>
#include "bpe_kernels.h"
#include "bpe_json.hpp"
#include "ugm_kernels.hpp"
#include "bpe_jsoncfg.hpp"
#include "bpe_streaming.hpp"
#include "c_api_utils.hpp"
@ -17,7 +19,7 @@ class TokenizerImpl : public OrtxObjectImpl {
virtual ~TokenizerImpl();
public:
OrtxStatus Load(const std::string& dir);
OrtxStatus Load(const std::string& tok_path);
OrtxStatus Tokenize(const std::vector<std::string_view>& input, std::vector<std::vector<extTokenId_t>>& t_ids) const {
return BatchEncode(input, t_ids);
@ -28,7 +30,7 @@ class TokenizerImpl : public OrtxObjectImpl {
}
OrtxStatus Token2Id(const std::string& token, extTokenId_t& id) const {
id = tokenizer_->GetTokenId(token);
id = std::visit([&](auto& tokenizer) { return tokenizer->GetTokenId(token); }, tokenizer_);
return {};
}
@ -55,9 +57,11 @@ class TokenizerImpl : public OrtxObjectImpl {
std::vector<std::vector<extTokenId_t>>& t_ids) const;
private:
std::string tokenizer_dir_;
using bpe_tokenizer_t = std::unique_ptr<JsonFastTokenizer>;
using ugm_tokenizer_t = std::unique_ptr<SpmUgmTokenizer>;
std::variant<bpe_tokenizer_t, ugm_tokenizer_t> tokenizer_;
std::shared_ptr<ort_extensions::bpe::TokenJsonConfig> tok_config_;
std::unique_ptr<JsonFastTokenizer> tokenizer_;
std::unique_ptr<BpeStreamingDecoder> detokenizer_;
};

Просмотреть файл

@ -1,16 +0,0 @@
{
"added_tokens_decoder": {},
"auto_map": {
"AutoTokenizer": [
"tokenization_phi3_small.Phi3SmallTokenizer",
"tokenization_phi3_small.Phi3SmallTokenizer"
]
},
"bos_token": "<|endoftext|>",
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
"clean_up_tokenization_spaces": true,
"eos_token": "<|endoftext|>",
"model_max_length": 8192,
"pad_token": "<|endoftext|>",
"tokenizer_class": "Phi3SmallTokenizer"
}

Различия файлов скрыты, потому что одна или несколько строк слишком длинны

Просмотреть файл

@ -0,0 +1 @@
{"model_max_length": 512}

Просмотреть файл

@ -0,0 +1,4 @@
{
"bos_token": "<|endoftext|>",
"eos_token": "<|endoftext|>"
}

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -0,0 +1,782 @@
{
"added_tokens_decoder": {
"100256": {
"content": "<|dummy_id_2|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100257": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100258": {
"content": "<|fim_prefix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100259": {
"content": "<|fim_middle|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100260": {
"content": "<|fim_suffix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100261": {
"content": "<|system|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100262": {
"content": "<|user|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100263": {
"content": "<|assistant|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100264": {
"content": "<|dummy_id_0|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100265": {
"content": "<|dummy_id_1|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100266": {
"content": "<|end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100267": {
"content": "<|dummy_id_3|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100268": {
"content": "<|dummy_id_4|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100269": {
"content": "<|dummy_id_5|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100270": {
"content": "<|dummy_id_6|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100271": {
"content": "<|dummy_id_7|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100272": {
"content": "<|dummy_id_8|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100273": {
"content": "<|dummy_id_9|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100274": {
"content": "<|dummy_id_10|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100275": {
"content": "<|dummy_id_11|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100276": {
"content": "<|endofprompt|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100277": {
"content": "<|dummy_id_12|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100278": {
"content": "<|dummy_id_13|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100279": {
"content": "<|dummy_id_14|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100280": {
"content": "<|dummy_id_15|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100281": {
"content": "<|dummy_id_16|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100282": {
"content": "<|dummy_id_17|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100283": {
"content": "<|dummy_id_18|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100284": {
"content": "<|dummy_id_19|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100285": {
"content": "<|dummy_id_20|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100286": {
"content": "<|dummy_id_21|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100287": {
"content": "<|dummy_id_22|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100288": {
"content": "<|dummy_id_23|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100289": {
"content": "<|dummy_id_24|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100290": {
"content": "<|dummy_id_25|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100291": {
"content": "<|dummy_id_26|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100292": {
"content": "<|dummy_id_27|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100293": {
"content": "<|dummy_id_28|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100294": {
"content": "<|dummy_id_29|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100295": {
"content": "<|dummy_id_30|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100296": {
"content": "<|dummy_id_31|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100297": {
"content": "<|dummy_id_32|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100298": {
"content": "<|dummy_id_33|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100299": {
"content": "<|dummy_id_34|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100300": {
"content": "<|dummy_id_35|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100301": {
"content": "<|dummy_id_36|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100302": {
"content": "<|dummy_id_37|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100303": {
"content": "<|dummy_id_38|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100304": {
"content": "<|dummy_id_39|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100305": {
"content": "<|dummy_id_40|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100306": {
"content": "<|dummy_id_41|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100307": {
"content": "<|dummy_id_42|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100308": {
"content": "<|dummy_id_43|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100309": {
"content": "<|dummy_id_44|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100310": {
"content": "<|dummy_id_45|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100311": {
"content": "<|dummy_id_46|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100312": {
"content": "<|dummy_id_47|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100313": {
"content": "<|dummy_id_48|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100314": {
"content": "<|dummy_id_49|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100315": {
"content": "<|dummy_id_50|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100316": {
"content": "<|dummy_id_51|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100317": {
"content": "<|dummy_id_52|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100318": {
"content": "<|dummy_id_53|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100319": {
"content": "<|dummy_id_54|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100320": {
"content": "<|dummy_id_55|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100321": {
"content": "<|dummy_id_56|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100322": {
"content": "<|dummy_id_57|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100323": {
"content": "<|dummy_id_58|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100324": {
"content": "<|dummy_id_59|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100325": {
"content": "<|dummy_id_60|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100326": {
"content": "<|dummy_id_61|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100327": {
"content": "<|dummy_id_62|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100328": {
"content": "<|dummy_id_63|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100329": {
"content": "<|dummy_id_64|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100330": {
"content": "<|dummy_id_65|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100331": {
"content": "<|dummy_id_66|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100332": {
"content": "<|dummy_id_67|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100333": {
"content": "<|dummy_id_68|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100334": {
"content": "<|dummy_id_69|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100335": {
"content": "<|dummy_id_70|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100336": {
"content": "<|dummy_id_71|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100337": {
"content": "<|dummy_id_72|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100338": {
"content": "<|dummy_id_73|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100339": {
"content": "<|dummy_id_74|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100340": {
"content": "<|dummy_id_75|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100341": {
"content": "<|dummy_id_76|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100342": {
"content": "<|dummy_id_77|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100343": {
"content": "<|dummy_id_78|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100344": {
"content": "<|dummy_id_79|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100345": {
"content": "<|dummy_id_80|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100346": {
"content": "<|dummy_id_81|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100347": {
"content": "<|dummy_id_82|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100348": {
"content": "<|dummy_id_83|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100349": {
"content": "<|dummy_id_84|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100350": {
"content": "<|dummy_id_85|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100351": {
"content": "<|dummy_id_86|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"bos_token": "<|endoftext|>",
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
"clean_up_tokenization_spaces": true,
"eos_token": "<|endoftext|>",
"model_input_names": [
"input_ids",
"attention_mask"
],
"model_max_length": 1000000000000000019884624838656,
"tokenizer_class": "PreTrainedTokenizerFast"
}

Просмотреть файл

@ -0,0 +1,4 @@
{
"bos_token": "<|endoftext|>",
"eos_token": "<|endoftext|>"
}

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -0,0 +1,782 @@
{
"added_tokens_decoder": {
"100256": {
"content": "<|dummy_id_2|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100257": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100258": {
"content": "<|fim_prefix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100259": {
"content": "<|fim_middle|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100260": {
"content": "<|fim_suffix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100261": {
"content": "<|system|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100262": {
"content": "<|user|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100263": {
"content": "<|assistant|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100264": {
"content": "<|dummy_id_0|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100265": {
"content": "<|dummy_id_1|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100266": {
"content": "<|end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100267": {
"content": "<|dummy_id_3|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100268": {
"content": "<|dummy_id_4|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100269": {
"content": "<|dummy_id_5|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100270": {
"content": "<|dummy_id_6|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100271": {
"content": "<|dummy_id_7|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100272": {
"content": "<|dummy_id_8|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100273": {
"content": "<|dummy_id_9|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100274": {
"content": "<|dummy_id_10|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100275": {
"content": "<|dummy_id_11|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100276": {
"content": "<|endofprompt|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100277": {
"content": "<|dummy_id_12|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100278": {
"content": "<|dummy_id_13|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100279": {
"content": "<|dummy_id_14|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100280": {
"content": "<|dummy_id_15|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100281": {
"content": "<|dummy_id_16|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100282": {
"content": "<|dummy_id_17|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100283": {
"content": "<|dummy_id_18|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100284": {
"content": "<|dummy_id_19|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100285": {
"content": "<|dummy_id_20|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100286": {
"content": "<|dummy_id_21|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100287": {
"content": "<|dummy_id_22|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100288": {
"content": "<|dummy_id_23|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100289": {
"content": "<|dummy_id_24|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100290": {
"content": "<|dummy_id_25|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100291": {
"content": "<|dummy_id_26|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100292": {
"content": "<|dummy_id_27|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100293": {
"content": "<|dummy_id_28|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100294": {
"content": "<|dummy_id_29|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100295": {
"content": "<|dummy_id_30|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100296": {
"content": "<|dummy_id_31|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100297": {
"content": "<|dummy_id_32|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100298": {
"content": "<|dummy_id_33|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100299": {
"content": "<|dummy_id_34|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100300": {
"content": "<|dummy_id_35|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100301": {
"content": "<|dummy_id_36|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100302": {
"content": "<|dummy_id_37|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100303": {
"content": "<|dummy_id_38|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100304": {
"content": "<|dummy_id_39|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100305": {
"content": "<|dummy_id_40|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100306": {
"content": "<|dummy_id_41|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100307": {
"content": "<|dummy_id_42|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100308": {
"content": "<|dummy_id_43|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100309": {
"content": "<|dummy_id_44|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100310": {
"content": "<|dummy_id_45|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100311": {
"content": "<|dummy_id_46|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100312": {
"content": "<|dummy_id_47|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100313": {
"content": "<|dummy_id_48|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100314": {
"content": "<|dummy_id_49|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100315": {
"content": "<|dummy_id_50|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100316": {
"content": "<|dummy_id_51|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100317": {
"content": "<|dummy_id_52|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100318": {
"content": "<|dummy_id_53|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100319": {
"content": "<|dummy_id_54|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100320": {
"content": "<|dummy_id_55|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100321": {
"content": "<|dummy_id_56|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100322": {
"content": "<|dummy_id_57|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100323": {
"content": "<|dummy_id_58|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100324": {
"content": "<|dummy_id_59|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100325": {
"content": "<|dummy_id_60|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100326": {
"content": "<|dummy_id_61|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100327": {
"content": "<|dummy_id_62|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100328": {
"content": "<|dummy_id_63|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100329": {
"content": "<|dummy_id_64|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100330": {
"content": "<|dummy_id_65|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100331": {
"content": "<|dummy_id_66|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100332": {
"content": "<|dummy_id_67|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100333": {
"content": "<|dummy_id_68|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100334": {
"content": "<|dummy_id_69|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100335": {
"content": "<|dummy_id_70|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100336": {
"content": "<|dummy_id_71|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100337": {
"content": "<|dummy_id_72|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100338": {
"content": "<|dummy_id_73|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100339": {
"content": "<|dummy_id_74|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100340": {
"content": "<|dummy_id_75|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100341": {
"content": "<|dummy_id_76|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100342": {
"content": "<|dummy_id_77|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100343": {
"content": "<|dummy_id_78|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100344": {
"content": "<|dummy_id_79|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100345": {
"content": "<|dummy_id_80|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100346": {
"content": "<|dummy_id_81|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100347": {
"content": "<|dummy_id_82|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100348": {
"content": "<|dummy_id_83|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100349": {
"content": "<|dummy_id_84|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100350": {
"content": "<|dummy_id_85|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"100351": {
"content": "<|dummy_id_86|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"bos_token": "<|endoftext|>",
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
"clean_up_tokenization_spaces": true,
"eos_token": "<|endoftext|>",
"model_input_names": [
"input_ids",
"attention_mask"
],
"model_max_length": 1000000000000000019884624838656,
"tokenizer_class": "PreTrainedTokenizerFast"
}

Просмотреть файл

@ -51,10 +51,10 @@ TEST(CApiTest, StreamApiTest) {
for (size_t i = 0; i < sizeof(token_ids) / sizeof(token_ids[0]); i++) {
const char* token = NULL;
err = OrtxDetokenizeCached(tokenizer, detok_cache, token_ids[i], &token);
EXPECT_EQ(err, kOrtxOK);
#ifdef _DEBUG
std::cout << token;
#endif
EXPECT_EQ(err, kOrtxOK);
}
#ifdef _DEBUG
@ -136,13 +136,9 @@ TEST(OrtxTokenizerTest, TicTokenTokenizer) {
EXPECT_EQ(out_text[0], input[0]);
}
TEST(OrtxTokenizerTest, Phi3_S_Tokenizer) {
if (!std::filesystem::exists("data2/phi-3-small")) {
GTEST_SKIP() << "Skip test as extra test data is not deployed.";
}
TEST(OrtxTokenizerTest, Phi3_Small_Hf_Tokenizer) {
auto tokenizer = std::make_unique<ort_extensions::TokenizerImpl>();
auto status = tokenizer->Load("data2/phi-3-small");
auto status = tokenizer->Load("data/tokenizer/phi-3-small-cvt");
if (!status.IsOk()) {
std::cout << status.ToString() << std::endl;
}
@ -171,7 +167,7 @@ TEST(OrtxTokenizerTest, Phi3_S_Tokenizer) {
TEST(OrtxTokenizerTest, Phi3_Small_Tokenizer) {
auto tokenizer = std::make_unique<ort_extensions::TokenizerImpl>();
auto status = tokenizer->Load("data/phi-3-small");
auto status = tokenizer->Load("data/tokenizer/phi-3-small");
if (!status.IsOk()) {
std::cout << status.ToString() << std::endl;
}
@ -399,7 +395,9 @@ TEST(OrtxTokenizerStreamTest, Phi3Tokenizer) {
EXPECT_TRUE(tokenizer != nullptr);
std::vector<std::string_view> input = {
R"(こんにちは。データ分析にはいくつかのステップがあります。まずは目的を明確にします。次に、データを収集し、クリーニングを行い ます。その後、データを構造化し、その後、データを分析します。これらのステップを実行することで、データを有意的に分析することができます。)"};
R"(こんにちは。データ分析にはいくつかのステップがあります。まずは目的を明確にします。次に、データを収集し、クリーニングを行います。)"
R"(その後、データを構造化し、その後、データを分析します。これらのステップを実行することで、データを有意的に分析することができます。)"
};
std::vector<std::vector<extTokenId_t>> token_ids;
status = tokenizer->Tokenize(input, token_ids);
EXPECT_TRUE(status.IsOk());
@ -446,3 +444,24 @@ TEST(OrtxTokenizerTest, WhisperTokenizer) {
EXPECT_EQ(err, kOrtxOK);
EXPECT_EQ(sot_id, 50258);
}
TEST(OrtxTokenizerTest, SpmUgmTokenizer) {
// test the llama2 tokenizer with BPE class, instead of sentencepiece wrapper.
OrtxObjectPtr<OrtxTokenizer> tokenizer(OrtxCreateTokenizer, "data/tokenizer/fairseq/xlm-roberta-base");
EXPECT_EQ(tokenizer.Code(), kOrtxOK);
const char* input[] = {"I like walking my cute dog\n and\x17 then, 生活的真谛是 \t\t\t\t \n\n61"};
OrtxObjectPtr<OrtxTokenId2DArray> token_ids;
OrtxTokenize(tokenizer.get(), input, 1, ort_extensions::ptr(token_ids));
EXPECT_EQ(token_ids.Code(), kOrtxOK);
size_t length = 0;
const extTokenId_t* ids = nullptr;
OrtxTokenId2DArrayGetItem(token_ids.get(), 0, &ids, &length);
std::vector<extTokenId_t> ids_vec(ids, ids + length);
// expected ids was generated using the following command:
// AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
EXPECT_EQ(ids_vec, std::vector<extTokenId_t>({
0, 87, 1884, 122395, 759, 99942, 10269, 136, 7068, 4, 6, 62668, 5364, 245875, 354, 11716, 2}));
}