Use `object` instead of `np.object` and `str` instead of `np.str`. (#337)
This commit is contained in:
Родитель
1d8d4b1fa4
Коммит
280ec289cb
|
@ -102,7 +102,7 @@ node = onnx.helper.make_node(
|
|||
)
|
||||
|
||||
text = "Hello world louder"
|
||||
inputs = np.array([text], dtype=np.object),
|
||||
inputs = np.array([text], dtype=object),
|
||||
|
||||
bert_tokenize_result = bert_cased_tokenizer.tokenize(text)
|
||||
|
||||
|
@ -207,7 +207,7 @@ node = onnx.helper.make_node(
|
|||
)
|
||||
|
||||
text = "Hello world louder"
|
||||
token_ids = np.array([bert_cased_tokenizer.tokenize(text)], dtype=np.object),
|
||||
token_ids = np.array([bert_cased_tokenizer.tokenize(text)], dtype=object),
|
||||
sentences = np.array(text)
|
||||
|
||||
|
||||
|
@ -383,7 +383,7 @@ graph = helper.make_graph(
|
|||
model = helper.make_model(
|
||||
graph, opset_imports=[helper.make_operatorsetid(domain, 1)])
|
||||
|
||||
text = np.array(["unwanted running", "unwantedX running"], dtype=np.object)
|
||||
text = np.array(["unwanted running", "unwantedX running"], dtype=object)
|
||||
tokens = np.array(['un', '##want', '##ed', 'runn', '##ing', 'un', '##want', '##ed',
|
||||
'[UNK]', 'runn', '##ing'], dtype=object),
|
||||
indices = np.array([14, 11, 12, 15, 16, 14, 11, 12, -1, 15, 16], dtype=int32)
|
||||
|
@ -452,7 +452,7 @@ node = onnx.helper.make_node(
|
|||
model=model
|
||||
)
|
||||
|
||||
inputs = np.array(["Hello world", "Hello world louder"], dtype=np.object),
|
||||
inputs = np.array(["Hello world", "Hello world louder"], dtype=object),
|
||||
nbest_size = np.array([0], dtype=np.float32),
|
||||
alpha = np.array([0], dtype=np.float32),
|
||||
add_bos = np.array([0], dtype=np.bool_),
|
||||
|
@ -521,7 +521,7 @@ node = onnx.helper.make_node(
|
|||
outputs=['tokens'],
|
||||
)
|
||||
|
||||
inputs = np.array([ "Hello world louder"], dtype=np.object),
|
||||
inputs = np.array([ "Hello world louder"], dtype=object),
|
||||
tokens = np.array(tokenizer(inputs), dtype=int32)
|
||||
|
||||
expect(node, inputs=[inputs],
|
||||
|
|
|
@ -147,7 +147,7 @@ class TestPythonOp(unittest.TestCase):
|
|||
res = []
|
||||
for x in xs:
|
||||
res.append(sep.join(x))
|
||||
return np.array(res, dtype=np.object)
|
||||
return np.array(res, dtype=object)
|
||||
|
||||
def test_python_operator(self):
|
||||
so = _ort.SessionOptions()
|
||||
|
@ -222,9 +222,9 @@ class TestPythonOp(unittest.TestCase):
|
|||
onnx_model = _create_test_join()
|
||||
self.assertIn('op_type: "PyOpJoin"', str(onnx_model))
|
||||
sess = _ort.InferenceSession(onnx_model.SerializeToString(), so)
|
||||
arr = np.array([["a", "b"]], dtype=np.object)
|
||||
arr = np.array([["a", "b"]], dtype=object)
|
||||
txout = sess.run(None, {'input_1': arr})
|
||||
exp = np.array(["a;b"], dtype=np.object)
|
||||
exp = np.array(["a;b"], dtype=object)
|
||||
assert txout[0][0] == exp[0]
|
||||
|
||||
|
||||
|
|
|
@ -298,7 +298,7 @@ class TestPythonOpSentencePiece(unittest.TestCase):
|
|||
inputs = dict(
|
||||
model=model,
|
||||
inputs=np.array(
|
||||
["Hello world", "Hello world louder"], dtype=np.object),
|
||||
["Hello world", "Hello world louder"], dtype=object),
|
||||
nbest_size=np.array([0], dtype=np.int64),
|
||||
alpha=np.array([0], dtype=np.float32),
|
||||
add_bos=np.array([0], dtype=np.bool_),
|
||||
|
@ -321,7 +321,7 @@ class TestPythonOpSentencePiece(unittest.TestCase):
|
|||
inputs = dict(
|
||||
model=model,
|
||||
inputs=np.array(
|
||||
["Hello world", "Hello world louder"], dtype=np.object),
|
||||
["Hello world", "Hello world louder"], dtype=object),
|
||||
nbest_size=np.array([0], dtype=np.int64),
|
||||
alpha=np.array([0], dtype=np.float32),
|
||||
add_bos=np.array([0], dtype=np.bool_),
|
||||
|
@ -346,7 +346,7 @@ class TestPythonOpSentencePiece(unittest.TestCase):
|
|||
inputs = dict(
|
||||
model=model,
|
||||
inputs=np.array(
|
||||
["Hello world", "Hello world louder"], dtype=np.object),
|
||||
["Hello world", "Hello world louder"], dtype=object),
|
||||
nbest_size=np.array([0], dtype=np.int64),
|
||||
alpha=np.array([0], dtype=np.float32),
|
||||
add_bos=np.array([0], dtype=np.bool_),
|
||||
|
@ -380,7 +380,7 @@ class TestPythonOpSentencePiece(unittest.TestCase):
|
|||
model=model,
|
||||
inputs=np.array(
|
||||
["Hello world", "Hello world louder"],
|
||||
dtype=np.object),
|
||||
dtype=object),
|
||||
nbest_size=np.array(
|
||||
[nbest_size], dtype=np.int64),
|
||||
alpha=np.array([alpha], dtype=np.float32),
|
||||
|
@ -415,7 +415,7 @@ class TestPythonOpSentencePiece(unittest.TestCase):
|
|||
model=model,
|
||||
inputs=np.array(
|
||||
["Hello world", "Hello world louder"],
|
||||
dtype=np.object),
|
||||
dtype=object),
|
||||
nbest_size=np.array(
|
||||
[nbest_size], dtype=np.int64),
|
||||
alpha=np.array([alpha], dtype=np.float32),
|
||||
|
|
|
@ -830,19 +830,19 @@ class TestPythonOpString(unittest.TestCase):
|
|||
def enumerate_matrix_couples(self):
|
||||
for i in range(1, 5):
|
||||
shape = (3,) * i
|
||||
a = (np.random.rand(*shape) * 10).astype(np.int32).astype(np.str)
|
||||
a = (np.random.rand(*shape) * 10).astype(np.int32).astype(str)
|
||||
yield a, a
|
||||
for j in range(i):
|
||||
shape2 = list(shape)
|
||||
shape2[j] = 1
|
||||
b = (np.random.rand(*shape2) * 10).astype(
|
||||
np.int32).astype(np.str)
|
||||
np.int32).astype(str)
|
||||
yield a, b
|
||||
for k in range(j+1, i):
|
||||
shape3 = list(shape2)
|
||||
shape3[k] = 1
|
||||
b = (np.random.rand(*shape3) * 10).astype(
|
||||
np.int32).astype(np.str)
|
||||
np.int32).astype(str)
|
||||
yield a, b
|
||||
|
||||
def test_string_equal_python(self):
|
||||
|
@ -1117,7 +1117,7 @@ class TestPythonOpString(unittest.TestCase):
|
|||
cc_sess = _ort.InferenceSession(cc_onnx_model.SerializeToString(), so)
|
||||
|
||||
inputs = dict(text=np.array(["unwanted running",
|
||||
"unwantedX running"], dtype=np.object))
|
||||
"unwantedX running"], dtype=object))
|
||||
cc_txout = cc_sess.run(None, inputs)
|
||||
exp = [np.array(['un', '##want', '##ed', 'runn', '##ing',
|
||||
'un', '##want', '##ed', '[UNK]', 'runn', '##ing']),
|
||||
|
|
|
@ -365,7 +365,7 @@
|
|||
" for a in list(node.attr.keys()):\n",
|
||||
" del node.attr[a]\n",
|
||||
" # Add the separator as an additional string input\n",
|
||||
" separator_const = ctx.make_const(utils.make_name('separator_const'), np.array([separator], dtype=np.object))\n",
|
||||
" separator_const = ctx.make_const(utils.make_name('separator_const'), np.array([separator], dtype=object))\n",
|
||||
" ctx.replace_inputs(node, node.input + [separator_const.output[0]])"
|
||||
],
|
||||
"cell_type": "code",
|
||||
|
@ -459,7 +459,7 @@
|
|||
" outputs=[PyCustomOpDef.dt_string])\n",
|
||||
"def unsorted_segment_join(x, segment_ids, num_segments):\n",
|
||||
" # The custom op implementation.\n",
|
||||
" result = np.full([num_segments], '', dtype=np.object)\n",
|
||||
" result = np.full([num_segments], '', dtype=object)\n",
|
||||
" for s, seg_id in zip(x, segment_ids):\n",
|
||||
" result[seg_id] += s\n",
|
||||
" return result\n",
|
||||
|
@ -473,7 +473,7 @@
|
|||
" for s, seg_id in zip(x, segment_ids):\n",
|
||||
" result[seg_id].append(s)\n",
|
||||
" result_joined = [separator.join(l) for l in result]\n",
|
||||
" return np.array(result_joined, dtype=np.object)"
|
||||
" return np.array(result_joined, dtype=object)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -485,7 +485,8 @@
|
|||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": [
|
||||
"[array(['javascript', 'carpet'], dtype=object)]\n[array(['java-script', 'car-pet'], dtype=object)]\n"
|
||||
"[array(['javascript', 'carpet'], dtype=object)]\n",
|
||||
"[array(['java-script', 'car-pet'], dtype=object)]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
|
Загрузка…
Ссылка в новой задаче