The pre- and post- processing library for ONNX Runtime
Перейти к файлу
Sayan Shaw 56b978233d
Fix OneBranch Official pipeline CodeQL issue (#437)
Co-authored-by: Sayan Shaw <sayanshaw@microsoft.com>
2023-05-15 10:34:07 -07:00
.config Update tsaoptions.json (#309) 2022-10-25 15:23:33 -07:00
.github/workflows Gradle wrapper security updates (#381) 2023-03-16 11:06:00 -07:00
.pipelines Fix OneBranch Official pipeline CodeQL issue (#437) 2023-05-15 10:34:07 -07:00
base Add a bbpe tokenizer decoder for Whisper model (#376) 2023-03-08 15:00:01 -08:00
cmake build for mac M1 (#430) 2023-05-07 09:15:55 +08:00
docs PyOp attribute supports int and float data type (#425) 2023-05-05 19:35:59 -07:00
includes Adding down-sampling and stereo mixing features for AudioDecoder (#420) 2023-05-04 13:30:10 -07:00
java Gradle wrapper security updates (#381) 2023-03-16 11:06:00 -07:00
nuget build for mac M1 (#430) 2023-05-07 09:15:55 +08:00
onnxruntime_extensions Handle ONNX 1.14 in test scripts (#435) 2023-05-12 07:13:37 +10:00
operators overflow (#439) 2023-05-15 10:47:15 +08:00
pyop PyOp attribute supports int and float data type (#425) 2023-05-05 19:35:59 -07:00
shared Add an audio decoder custom op for whisper end-to-end processing (#385) 2023-04-11 14:47:10 -07:00
test Handle ONNX 1.14 in test scripts (#435) 2023-05-12 07:13:37 +10:00
tools Add nuget.org publish version option (#426) 2023-05-08 13:44:19 -07:00
tutorials Fix the unit test failure with ONNX 1.14 package. (#428) 2023-05-08 11:37:54 -07:00
.clang-format initial checkins 2020-10-12 10:52:52 -07:00
.clang-tidy initial checkins 2020-10-12 10:52:52 -07:00
.flake8 initial checkins 2020-10-12 10:52:52 -07:00
.gitignore Add an C# demo project for NuGet package (#407) 2023-04-27 14:29:58 -07:00
.sscignore Fix Secure Supply Chain Analysis Warning in PR pipeline (#414) 2023-05-04 16:29:21 -07:00
CMakeLists.txt Fix Android AAR in nuget package. Requires libortextensions.so. (#429) 2023-05-06 17:32:08 +10:00
CODEOWNERS Create CODEOWNERS 2021-04-21 16:46:21 -07:00
CODE_OF_CONDUCT.md Initial CODE_OF_CONDUCT.md commit 2020-10-05 12:36:41 -07:00
LICENSE Updating LICENSE to template content 2020-10-05 12:36:43 -07:00
MANIFEST.in Prepare for 0.4.0 release (#151) 2021-09-25 00:40:12 -07:00
README.md PyOp attribute supports int and float data type (#425) 2023-05-05 19:35:59 -07:00
SECURITY.md Initial SECURITY.md commit 2020-10-05 12:36:44 -07:00
ThirdPartyNotices.txt Added ThirdPartyNotices.txt (#341) 2023-01-20 09:39:14 -08:00
build.android Android package build updates (#344) 2023-01-13 14:06:00 -08:00
build.bat Add a bbpe tokenizer decoder for Whisper model (#376) 2023-03-08 15:00:01 -08:00
build.ios_xcframework Add iOS packaging pipeline. (#327) 2022-12-23 05:27:41 -08:00
build.sh support build_id on Python package building (#281) 2022-08-24 14:39:33 -07:00
build_lib.bat Add build.py to make it easier for developers to build different variants (#318) 2023-01-02 14:55:31 +10:00
build_lib.sh Add ability to prevent exception propagation if building as part of ORT when ORT has exceptions disabled (#368) 2023-02-27 10:31:44 -08:00
cgmanifest.json Add `$schema` to `cgmanifest.json` (#284) 2022-08-30 15:45:58 -07:00
pyproject.toml make tensorflow be optional for unittest (#394) 2023-04-11 19:52:55 -07:00
requirements-dev.txt Compatible with onnxruntime-gpu package (#410) 2023-04-26 17:17:23 -07:00
requirements.txt Revert "Pin onnx version to 1.13.1" (#423) 2023-05-05 13:32:42 -07:00
setup.cfg update Python pipelines for release (#353) 2023-02-06 18:23:56 -08:00
setup.py support batch > 1 in BpeDecoder (#400) 2023-04-19 14:28:56 -07:00
version.txt add the onnxruntime 1.14 release into the CI pipeline (#387) 2023-03-27 16:52:08 -07:00

README.md

ONNXRuntime-Extensions

Build Status

What's ONNXRuntime-Extensions

Introduction: ONNXRuntime-Extensions is a library that extends the capability of the ONNX models and inference with ONNX Runtime, via ONNX Runtime Custom Operator ABIs. It includes a set of ONNX Runtime Custom Operator to support the common pre- and post-processing operators for vision, text, and nlp models. And it supports multiple languages and platforms, like Python on Windows/Linux/macOS, some mobile platforms like Android and iOS, and Web-Assembly etc. The basic workflow is to enhance a ONNX model firstly and then do the model inference with ONNX Runtime and ONNXRuntime-Extensions package.

Quickstart

Python installation

pip install onnxruntime-extensions

nightly build

on Windows

pip install --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ORT-Nightly/pypi/simple/ onnxruntime-extensions

Please ensure that you have met the prerequisites of onnxruntime-extensions (e.g., onnx and onnxruntime) in your Python environment.

on Linux/macOS

the packages are not ready yet, so it could be installed from source. Please make sure the compiler toolkit like gcc(later than g++ 8.0) or clang, and the tool cmake are installed before the following command

python -m pip install git+https://github.com/microsoft/onnxruntime-extensions.git

Usage

1. Augment an ONNX model with a pre- and post-processing pipeline

check tutorial for a couple of examples on how to do it.

2. Using Extensions for ONNX Runtime inference

Python

import onnxruntime as _ort
from onnxruntime_extensions import get_library_path as _lib_path

so = _ort.SessionOptions()
so.register_custom_ops_library(_lib_path())

# Run the ONNXRuntime Session, as ONNXRuntime docs suggested.
# sess = _ort.InferenceSession(model, so)
# sess.run (...)

C++

  // The line loads the customop library into ONNXRuntime engine to load the ONNX model with the custom op
  Ort::ThrowOnError(Ort::GetApi().RegisterCustomOpsLibrary((OrtSessionOptions*)session_options, custom_op_library_filename, &handle));

  // The regular ONNXRuntime invoking to run the model.
  Ort::Session session(env, model_uri, session_options);
  RunSession(session, inputs, outputs);

Java

var env = OrtEnvironment.getEnvironment();
var sess_opt = new OrtSession.SessionOptions();

/* Register the custom ops from onnxruntime-extensions */
sess_opt.registerCustomOpLibrary(OrtxPackage.getLibraryPath());

Use exporters to generate graphs with custom operators

The PyTorch and TensorFlow converters support custom operator generation if the operation from the original framework cannot be interpreted as a standard ONNX operators. Check the following two examples on how to do this.

  1. CustomOp conversion by pytorch.onnx.exporter
  2. CustomOp conversion by tf2onnx

Add a new custom operator to onnxruntime-extensions

You can contribute customop C++ implementations directly in this repository if they have general applicability to other users. In addition, if you want to quickly verify the ONNX model with Python, you can wrap the custom operator with PyOp.

import numpy
from onnxruntime_extensions import PyOp, onnx_op

# Implement the CustomOp by decorating a function with onnx_op
@onnx_op(op_type="Inverse", inputs=[PyOp.dt_float])
def inverse(x):
    # the user custom op implementation here:
    return numpy.linalg.inv(x)

# Run the model with this custom op
# model_func = PyOrtFunction(model_path)
# outputs = model_func(inputs)
# ...

Check development.md for build and test

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

License

MIT License