The pre- and post- processing library for ONNX Runtime
Перейти к файлу
Wenbing Li 6209804ee9
Update ci.yml for Azure Pipelines (#504)
* Update ci.yml for Azure Pipelines

macOS ci pipeline fixing.

* Update ci.yml for Azure Pipelines

* Update ci.yml for Azure Pipelines

* drop python 3.8 support in macOS due ADO

* fix macos wheel pipeline

* revert the change to add 3.9 back.
2023-08-02 10:54:42 -07:00
.config Update tsaoptions.json (#309) 2022-10-25 15:23:33 -07:00
.github/workflows Gradle wrapper security updates (#381) 2023-03-16 11:06:00 -07:00
.pipelines Update ci.yml for Azure Pipelines (#504) 2023-08-02 10:54:42 -07:00
base Make kernel Compute method implementations const (#500) 2023-07-28 09:25:36 +10:00
cmake Enable AzureOp packaging (#495) 2023-07-20 14:16:08 -07:00
docs Add a new API for building data processing graph from Huggingface transformers processor/tokenizer (#482) 2023-07-17 16:50:58 -07:00
includes Configure header path for SPM build (#501) 2023-07-31 16:35:57 -07:00
java fix the android packaging issue (#497) 2023-07-24 17:18:49 -07:00
nuget Update release notes for nuget (#456) 2023-05-26 10:30:16 -07:00
onnxruntime_extensions Add Llama and Llama 2 tokenization supports (#499) 2023-07-26 10:22:00 -07:00
operators Make kernel Compute method implementations const (#500) 2023-07-28 09:25:36 +10:00
pyop PyOp attribute supports int and float data type (#425) 2023-05-05 19:35:59 -07:00
shared refine audiodecoder with new api (#489) 2023-07-12 13:11:58 -07:00
test Add Llama and Llama 2 tokenization supports (#499) 2023-07-26 10:22:00 -07:00
tools Enable AzureOp packaging (#495) 2023-07-20 14:16:08 -07:00
tutorials Update whisper model test cases and e2e example (#496) 2023-07-21 15:27:02 -07:00
.clang-format initial checkins 2020-10-12 10:52:52 -07:00
.clang-tidy initial checkins 2020-10-12 10:52:52 -07:00
.flake8 initial checkins 2020-10-12 10:52:52 -07:00
.gitignore Add an C# demo project for NuGet package (#407) 2023-04-27 14:29:58 -07:00
.sscignore Fix Secure Supply Chain Analysis Warning in PR pipeline (#414) 2023-05-04 16:29:21 -07:00
CMakeLists.txt Implement azure invokers (#487) 2023-07-10 10:07:33 -07:00
CODEOWNERS Create CODEOWNERS 2021-04-21 16:46:21 -07:00
CODE_OF_CONDUCT.md Initial CODE_OF_CONDUCT.md commit 2020-10-05 12:36:41 -07:00
LICENSE Updating LICENSE to template content 2020-10-05 12:36:43 -07:00
MANIFEST.in Prepare for 0.4.0 release (#151) 2021-09-25 00:40:12 -07:00
README.md Add a new API for building data processing graph from Huggingface transformers processor/tokenizer (#482) 2023-07-17 16:50:58 -07:00
SECURITY.md Initial SECURITY.md commit 2020-10-05 12:36:44 -07:00
ThirdPartyNotices.txt Update cgmanifest.json and ThirdPartyNotices.txt (#438) 2023-05-15 13:11:05 -07:00
build.android Android package build updates (#344) 2023-01-13 14:06:00 -08:00
build.bat Add a bbpe tokenizer decoder for Whisper model (#376) 2023-03-08 15:00:01 -08:00
build.ios_xcframework Add iOS packaging pipeline. (#327) 2022-12-23 05:27:41 -08:00
build.sh support build_id on Python package building (#281) 2022-08-24 14:39:33 -07:00
build_lib.bat Add build.py to make it easier for developers to build different variants (#318) 2023-01-02 14:55:31 +10:00
build_lib.sh Add ability to prevent exception propagation if building as part of ORT when ORT has exceptions disabled (#368) 2023-02-27 10:31:44 -08:00
cgmanifest.json Update cgmanifest.json and ThirdPartyNotices.txt (#438) 2023-05-15 13:11:05 -07:00
pyproject.toml Enable AzureOp packaging (#495) 2023-07-20 14:16:08 -07:00
requirements-dev.txt upgrade all dependency versions (#466) 2023-06-03 20:09:41 -07:00
requirements.txt Remove onnx<1.14 from requirements.txt (#447) 2023-05-21 23:34:09 -07:00
setup.cfg update Python pipelines for release (#353) 2023-02-06 18:23:56 -08:00
setup.py Enable AzureOp packaging (#495) 2023-07-20 14:16:08 -07:00
version.txt upgrade all dependency versions (#466) 2023-06-03 20:09:41 -07:00

README.md

ONNXRuntime-Extensions

Build Status

What's ONNXRuntime-Extensions

Introduction: ONNXRuntime-Extensions is a library that extends the capability of the ONNX models and inference with ONNX Runtime, via ONNX Runtime Custom Operator ABIs. It includes a set of ONNX Runtime Custom Operator to support the common pre- and post-processing operators for vision, text, and nlp models. And it supports multiple languages and platforms, like Python on Windows/Linux/macOS, some mobile platforms like Android and iOS, and Web-Assembly etc. The basic workflow is to enhance a ONNX model firstly and then do the model inference with ONNX Runtime and ONNXRuntime-Extensions package.

Quickstart

Python installation

pip install onnxruntime-extensions

Nightly Build

on Windows

pip install --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ORT-Nightly/pypi/simple/ onnxruntime-extensions

Please ensure that you have met the prerequisites of onnxruntime-extensions (e.g., onnx and onnxruntime) in your Python environment.

on Linux/macOS

Please make sure the compiler toolkit like gcc(later than g++ 8.0) or clang are installed before the following command

python -m pip install git+https://github.com/microsoft/onnxruntime-extensions.git

Usage

1. Generate the pre-/post- processing ONNX model

With onnxruntime-extensions Python package, you can easily get the ONNX processing graph by converting them from Huggingface transformer data processing classes, check the following API for details.

help(onnxruntime_extensions.gen_processing_models)

NOTE: These data processing model can be merged into other model onnx.compose if needed.

2. Using Extensions for ONNX Runtime inference

Python

There are individual packages for the following languages, please install it for the build.

import onnxruntime as _ort
from onnxruntime_extensions import get_library_path as _lib_path

so = _ort.SessionOptions()
so.register_custom_ops_library(_lib_path())

# Run the ONNXRuntime Session, as ONNXRuntime docs suggested.
# sess = _ort.InferenceSession(model, so)
# sess.run (...)

C++

  // The line loads the customop library into ONNXRuntime engine to load the ONNX model with the custom op
  Ort::ThrowOnError(Ort::GetApi().RegisterCustomOpsLibrary((OrtSessionOptions*)session_options, custom_op_library_filename, &handle));

  // The regular ONNXRuntime invoking to run the model.
  Ort::Session session(env, model_uri, session_options);
  RunSession(session, inputs, outputs);

Java

var env = OrtEnvironment.getEnvironment();
var sess_opt = new OrtSession.SessionOptions();

/* Register the custom ops from onnxruntime-extensions */
sess_opt.registerCustomOpLibrary(OrtxPackage.getLibraryPath());

C#

SessionOptions options = new SessionOptions()
options.RegisterOrtExtensions()
session = new InferenceSession(model, options)

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

License

MIT License