Reformat with black.
This commit is contained in:
Родитель
9e695dbb99
Коммит
72dc4ebcf4
|
@ -22,14 +22,10 @@ class ExponentialDispersionModel(metaclass=ABCMeta):
|
|||
@abstractmethod
|
||||
def unit_variance(self, y_pred: ArrayLike): ...
|
||||
@abstractmethod
|
||||
def unit_deviance(
|
||||
self, y: ArrayLike, y_pred: ArrayLike, check_input: bool = False
|
||||
) -> ArrayLike: ...
|
||||
def unit_deviance(self, y: ArrayLike, y_pred: ArrayLike, check_input: bool = False) -> ArrayLike: ...
|
||||
def unit_deviance_derivative(self, y: ArrayLike, y_pred: ArrayLike): ...
|
||||
def deviance(self, y: ArrayLike, y_pred: ArrayLike, weights: NDArray | int = 1): ...
|
||||
def deviance_derivative(
|
||||
self, y: NDArray, y_pred: NDArray, weights: NDArray | int = 1
|
||||
): ...
|
||||
def deviance_derivative(self, y: NDArray, y_pred: NDArray, weights: NDArray | int = 1): ...
|
||||
|
||||
class TweedieDistribution(ExponentialDispersionModel):
|
||||
def __init__(self, power: float = 0): ...
|
||||
|
@ -38,9 +34,7 @@ class TweedieDistribution(ExponentialDispersionModel):
|
|||
@power.setter
|
||||
def power(self, power): ...
|
||||
def unit_variance(self, y_pred: ArrayLike): ...
|
||||
def unit_deviance(
|
||||
self, y: ArrayLike, y_pred: ArrayLike, check_input: bool = False
|
||||
) -> ArrayLike: ...
|
||||
def unit_deviance(self, y: ArrayLike, y_pred: ArrayLike, check_input: bool = False) -> ArrayLike: ...
|
||||
|
||||
class NormalDistribution(TweedieDistribution):
|
||||
def __init__(self): ...
|
||||
|
|
|
@ -36,9 +36,7 @@ class BaseLink(ABC):
|
|||
@abstractmethod
|
||||
def link(self, y_pred: ArrayLike, out: ArrayLike | None = None) -> ArrayLike: ...
|
||||
@abstractmethod
|
||||
def inverse(
|
||||
self, raw_prediction: ArrayLike, out: ArrayLike | None = None
|
||||
) -> ArrayLike: ...
|
||||
def inverse(self, raw_prediction: ArrayLike, out: ArrayLike | None = None) -> ArrayLike: ...
|
||||
|
||||
class IdentityLink(BaseLink):
|
||||
def link(self, y_pred: ArrayLike, out: ArrayLike | None = None) -> ArrayLike: ...
|
||||
|
@ -50,18 +48,14 @@ class LogLink(BaseLink):
|
|||
interval_y_pred = ...
|
||||
|
||||
def link(self, y_pred: ArrayLike, out: ArrayLike | None = None) -> ArrayLike: ...
|
||||
def inverse(
|
||||
self, raw_prediction: ArrayLike, out: ArrayLike | None = None
|
||||
) -> ArrayLike: ...
|
||||
def inverse(self, raw_prediction: ArrayLike, out: ArrayLike | None = None) -> ArrayLike: ...
|
||||
|
||||
class LogitLink(BaseLink):
|
||||
|
||||
interval_y_pred = ...
|
||||
|
||||
def link(self, y_pred: ArrayLike, out: ArrayLike | None = None) -> ArrayLike: ...
|
||||
def inverse(
|
||||
self, raw_prediction: ArrayLike, out: ArrayLike | None = None
|
||||
) -> ArrayLike: ...
|
||||
def inverse(self, raw_prediction: ArrayLike, out: ArrayLike | None = None) -> ArrayLike: ...
|
||||
|
||||
class MultinomialLogit(BaseLink):
|
||||
|
||||
|
@ -70,8 +64,6 @@ class MultinomialLogit(BaseLink):
|
|||
|
||||
def symmetrize_raw_prediction(self, raw_prediction): ...
|
||||
def link(self, y_pred: ArrayLike, out: ArrayLike | None = None) -> ArrayLike: ...
|
||||
def inverse(
|
||||
self, raw_prediction: ArrayLike, out: ArrayLike | None = None
|
||||
) -> ArrayLike: ...
|
||||
def inverse(self, raw_prediction: ArrayLike, out: ArrayLike | None = None) -> ArrayLike: ...
|
||||
|
||||
_LINKS: dict = ...
|
||||
|
|
|
@ -28,21 +28,20 @@ from ..utils import check_scalar
|
|||
from ..utils.stats import _weighted_percentile
|
||||
from sklearn._loss.link import IdentityLink, LogLink, LogitLink, MultinomialLogit
|
||||
|
||||
|
||||
class CyLossFunction:
|
||||
def cy_loss(self, y_true:float, raw_prediction: float) -> float: ...
|
||||
def cy_gradient(self, y_true: float, raw_prediction: float) -> float:...
|
||||
def cy_grad_hess(self, y_true: float, raw_prediction: float) -> tuple[float,float]:...
|
||||
def cy_loss(self, y_true: float, raw_prediction: float) -> float: ...
|
||||
def cy_gradient(self, y_true: float, raw_prediction: float) -> float: ...
|
||||
def cy_grad_hess(self, y_true: float, raw_prediction: float) -> tuple[float, float]: ...
|
||||
|
||||
class CyHalfSquaredError(CyLossFunction):...
|
||||
class CyAbsoluteError(CyLossFunction):...
|
||||
class CyPinballLoss(CyLossFunction):...
|
||||
class CyHalfPoissonLoss(CyLossFunction):...
|
||||
class CyHalfGammaLoss(CyLossFunction):...
|
||||
class CyHalfTweedieLoss(CyLossFunction):...
|
||||
class CyHalfTweedieLossIdentity(CyLossFunction):...
|
||||
class CyHalfBinomialLoss(CyLossFunction):...
|
||||
class CyHalfMultinomialLoss(CyLossFunction):...
|
||||
class CyHalfSquaredError(CyLossFunction): ...
|
||||
class CyAbsoluteError(CyLossFunction): ...
|
||||
class CyPinballLoss(CyLossFunction): ...
|
||||
class CyHalfPoissonLoss(CyLossFunction): ...
|
||||
class CyHalfGammaLoss(CyLossFunction): ...
|
||||
class CyHalfTweedieLoss(CyLossFunction): ...
|
||||
class CyHalfTweedieLossIdentity(CyLossFunction): ...
|
||||
class CyHalfBinomialLoss(CyLossFunction): ...
|
||||
class CyHalfMultinomialLoss(CyLossFunction): ...
|
||||
|
||||
# Note: The shape of raw_prediction for multiclass classifications are
|
||||
# - GradientBoostingClassifier: (n_samples, n_classes)
|
||||
|
@ -132,9 +131,7 @@ class BaseLoss:
|
|||
sample_weight: NDArray | None = None,
|
||||
n_threads: int = 1,
|
||||
) -> float: ...
|
||||
def fit_intercept_only(
|
||||
self, y_true: ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> Scalar | NDArray: ...
|
||||
def fit_intercept_only(self, y_true: ArrayLike, sample_weight: ArrayLike | None = None) -> Scalar | NDArray: ...
|
||||
def constant_to_optimal_zero(self, y_true, sample_weight=None): ...
|
||||
def init_gradient_and_hessian(
|
||||
self,
|
||||
|
@ -164,15 +161,11 @@ class PinballLoss(BaseLoss):
|
|||
need_update_leaves_values: bool = ...
|
||||
|
||||
def __init__(self, sample_weight: None = None, quantile: float = 0.5) -> None: ...
|
||||
def fit_intercept_only(
|
||||
self, y_true: ndarray, sample_weight: None = None
|
||||
) -> float64: ...
|
||||
def fit_intercept_only(self, y_true: ndarray, sample_weight: None = None) -> float64: ...
|
||||
|
||||
class HalfPoissonLoss(BaseLoss):
|
||||
def __init__(self, sample_weight: None = None) -> None: ...
|
||||
def constant_to_optimal_zero(
|
||||
self, y_true: ndarray, sample_weight: None = None
|
||||
) -> ndarray: ...
|
||||
def constant_to_optimal_zero(self, y_true: ndarray, sample_weight: None = None) -> ndarray: ...
|
||||
|
||||
class HalfGammaLoss(BaseLoss):
|
||||
def __init__(self, sample_weight=None): ...
|
||||
|
|
|
@ -48,25 +48,12 @@ class BaseEstimator:
|
|||
def set_params(self, **params) -> BaseEstimator: ...
|
||||
def __repr__(self, N_CHAR_MAX: int = 700) -> str: ...
|
||||
def __getstate__(self) -> Dict[str, Optional[Union[int, str, ndarray]]]: ...
|
||||
def __setstate__(
|
||||
self, state: Dict[str, Optional[Union[int, str, ndarray]]]
|
||||
) -> None: ...
|
||||
def __setstate__(self, state: Dict[str, Optional[Union[int, str, ndarray]]]) -> None: ...
|
||||
def _more_tags(self) -> Dict[str, Union[bool, List[str], List[Type[float64]]]]: ...
|
||||
def _get_tags(
|
||||
self,
|
||||
) -> Dict[
|
||||
str,
|
||||
Union[
|
||||
bool,
|
||||
List[str],
|
||||
Dict[str, str],
|
||||
List[Type[float64]],
|
||||
List[Union[Type[float64], Type[float32]]],
|
||||
],
|
||||
]: ...
|
||||
def _check_n_features(
|
||||
self, X: Union[DataFrame, ndarray, csr_matrix, csc_matrix], reset: bool
|
||||
) -> None: ...
|
||||
) -> Dict[str, Union[bool, List[str], Dict[str, str], List[Type[float64]], List[Union[Type[float64], Type[float32]]],],]: ...
|
||||
def _check_n_features(self, X: Union[DataFrame, ndarray, csr_matrix, csc_matrix], reset: bool) -> None: ...
|
||||
def _check_feature_names(self, X: Any, *, reset) -> None: ...
|
||||
def _validate_data(
|
||||
self,
|
||||
|
@ -87,13 +74,7 @@ class BaseEstimator:
|
|||
Tuple[Dict[str, Union[bool, str]], Dict[str, bool]],
|
||||
] = False,
|
||||
**check_params,
|
||||
) -> Union[
|
||||
Tuple[ndarray, ndarray],
|
||||
Tuple[csr_matrix, ndarray],
|
||||
ndarray,
|
||||
csr_matrix,
|
||||
Tuple[csc_matrix, ndarray],
|
||||
]: ...
|
||||
) -> Union[Tuple[ndarray, ndarray], Tuple[csr_matrix, ndarray], ndarray, csr_matrix, Tuple[csc_matrix, ndarray],]: ...
|
||||
@property
|
||||
def _repr_html_(self): ...
|
||||
def _repr_html_inner(self): ...
|
||||
|
@ -103,18 +84,14 @@ class ClassifierMixin:
|
|||
|
||||
_estimator_type: str = ...
|
||||
|
||||
def score(
|
||||
self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def score(self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None) -> float: ...
|
||||
def _more_tags(self) -> Dict[str, bool]: ...
|
||||
|
||||
class RegressorMixin:
|
||||
|
||||
_estimator_type: str = ...
|
||||
|
||||
def score(
|
||||
self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def score(self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None) -> float: ...
|
||||
def _more_tags(self) -> Dict[str, bool]: ...
|
||||
|
||||
class ClusterMixin:
|
||||
|
@ -132,19 +109,13 @@ class BiclusterMixin:
|
|||
def get_submatrix(self, i: int, data: ArrayLike) -> np.ndarray: ...
|
||||
|
||||
class TransformerMixin:
|
||||
def fit_transform(
|
||||
self, X: ArrayLike, y: ArrayLike | None = None, **fit_params
|
||||
) -> NDArray: ...
|
||||
def fit_transform(self, X: ArrayLike, y: ArrayLike | None = None, **fit_params) -> NDArray: ...
|
||||
|
||||
class _OneToOneFeatureMixin:
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
|
||||
class _ClassNamePrefixFeaturesOutMixin:
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
|
||||
class DensityMixin:
|
||||
|
||||
|
|
|
@ -91,12 +91,8 @@ def _fit_classifier_calibrator_pair(
|
|||
sample_weight: Optional[ndarray] = None,
|
||||
**fit_params,
|
||||
) -> "_CalibratedClassifier": ...
|
||||
def _get_prediction_method(
|
||||
clf: Union[GaussianNB, RandomForestClassifier]
|
||||
) -> Tuple[Callable, str]: ...
|
||||
def _compute_predictions(
|
||||
pred_method: Callable, method_name: str, X: ndarray, n_classes: int
|
||||
) -> ndarray: ...
|
||||
def _get_prediction_method(clf: Union[GaussianNB, RandomForestClassifier]) -> Tuple[Callable, str]: ...
|
||||
def _compute_predictions(pred_method: Callable, method_name: str, X: ndarray, n_classes: int) -> ndarray: ...
|
||||
def _fit_calibrator(
|
||||
clf: Union[GaussianNB, RandomForestClassifier],
|
||||
predictions: ndarray,
|
||||
|
@ -122,9 +118,7 @@ def _sigmoid_calibration(
|
|||
) -> Tuple[float64, float64]: ...
|
||||
|
||||
class _SigmoidCalibration(RegressorMixin, BaseEstimator):
|
||||
def fit(
|
||||
self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> "_SigmoidCalibration": ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None) -> "_SigmoidCalibration": ...
|
||||
def predict(self, T: ArrayLike) -> NDArray: ...
|
||||
|
||||
def calibration_curve(
|
||||
|
@ -132,7 +126,7 @@ def calibration_curve(
|
|||
y_prob: ArrayLike,
|
||||
*,
|
||||
pos_label: int | str | None = None,
|
||||
normalize: bool|str = "deprecated",
|
||||
normalize: bool | str = "deprecated",
|
||||
n_bins: int = 5,
|
||||
strategy: Literal["uniform", "quantile"] = "uniform",
|
||||
) -> tuple[NDArray, NDArray]: ...
|
||||
|
|
|
@ -2,7 +2,6 @@ from numpy import bool_, ndarray
|
|||
from typing import Tuple, Union, Literal
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
|
||||
|
||||
# Author: Alexandre Gramfort alexandre.gramfort@inria.fr
|
||||
# Gael Varoquaux gael.varoquaux@normalesup.org
|
||||
|
||||
|
|
|
@ -23,9 +23,7 @@ from scipy.sparse._lil import lil_matrix
|
|||
###############################################################################
|
||||
# For non fully-connected graphs
|
||||
|
||||
def _fix_connectivity(
|
||||
X: ndarray, connectivity: Union[csr_matrix, coo_matrix], affinity: str
|
||||
) -> Tuple[lil_matrix, int]: ...
|
||||
def _fix_connectivity(X: ndarray, connectivity: Union[csr_matrix, coo_matrix], affinity: str) -> Tuple[lil_matrix, int]: ...
|
||||
def _single_linkage_tree(
|
||||
connectivity: coo_matrix,
|
||||
n_samples: int,
|
||||
|
@ -57,15 +55,9 @@ def linkage_tree(
|
|||
) -> tuple[np.ndarray, int, int, NDArray | None, np.ndarray]: ...
|
||||
|
||||
# Matching names to tree-building strategies
|
||||
def _complete_linkage(
|
||||
*args, **kwargs
|
||||
) -> Union[Tuple[ndarray, int, int, ndarray], Tuple[ndarray, int, int, None]]: ...
|
||||
def _average_linkage(
|
||||
*args, **kwargs
|
||||
) -> Union[Tuple[ndarray, int, int, ndarray], Tuple[ndarray, int, int, None]]: ...
|
||||
def _single_linkage(
|
||||
*args, **kwargs
|
||||
) -> Union[Tuple[ndarray, int, int, ndarray], Tuple[ndarray, int, int, None]]: ...
|
||||
def _complete_linkage(*args, **kwargs) -> Union[Tuple[ndarray, int, int, ndarray], Tuple[ndarray, int, int, None]]: ...
|
||||
def _average_linkage(*args, **kwargs) -> Union[Tuple[ndarray, int, int, ndarray], Tuple[ndarray, int, int, None]]: ...
|
||||
def _single_linkage(*args, **kwargs) -> Union[Tuple[ndarray, int, int, ndarray], Tuple[ndarray, int, int, None]]: ...
|
||||
|
||||
_TREE_BUILDERS = ...
|
||||
|
||||
|
@ -82,7 +74,7 @@ class AgglomerativeClustering(ClusterMixin, BaseEstimator):
|
|||
n_clusters: int | None = 2,
|
||||
*,
|
||||
affinity: str | Callable = "euclidean",
|
||||
memory = None,
|
||||
memory=None,
|
||||
connectivity: ArrayLike | Callable | None = None,
|
||||
compute_full_tree: bool | Literal["auto"] = "auto",
|
||||
linkage: Literal["ward", "complete", "average", "single"] = "ward",
|
||||
|
@ -90,20 +82,16 @@ class AgglomerativeClustering(ClusterMixin, BaseEstimator):
|
|||
compute_distances: bool = False,
|
||||
) -> None: ...
|
||||
def fit(self, X: ArrayLike, y: None = None) -> "AgglomerativeClustering": ...
|
||||
def _fit(
|
||||
self, X: ndarray
|
||||
) -> Union[AgglomerativeClustering, FeatureAgglomeration]: ...
|
||||
def _fit(self, X: ndarray) -> Union[AgglomerativeClustering, FeatureAgglomeration]: ...
|
||||
def fit_predict(self, X: ArrayLike, y: None = None) -> NDArray: ...
|
||||
|
||||
class FeatureAgglomeration(
|
||||
_ClassNamePrefixFeaturesOutMixin, AgglomerativeClustering, AgglomerationTransform
|
||||
):
|
||||
class FeatureAgglomeration(_ClassNamePrefixFeaturesOutMixin, AgglomerativeClustering, AgglomerationTransform):
|
||||
def __init__(
|
||||
self,
|
||||
n_clusters: int = 2,
|
||||
*,
|
||||
affinity: str | Callable = "euclidean",
|
||||
memory = None,
|
||||
memory=None,
|
||||
connectivity: ArrayLike | Callable | None = None,
|
||||
compute_full_tree: bool | Literal["auto"] = "auto",
|
||||
linkage: Literal["ward", "complete", "average", "single"] = "ward",
|
||||
|
@ -111,8 +99,6 @@ class FeatureAgglomeration(
|
|||
distance_threshold: float | None = None,
|
||||
compute_distances: bool = False,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike, y: Optional[ndarray] = None
|
||||
) -> "FeatureAgglomeration": ...
|
||||
def fit(self, X: ArrayLike, y: Optional[ndarray] = None) -> "FeatureAgglomeration": ...
|
||||
@property
|
||||
def fit_predict(self): ...
|
||||
|
|
|
@ -47,12 +47,8 @@ class BaseSpectral(BiclusterMixin, BaseEstimator, metaclass=ABCMeta):
|
|||
random_state: Optional[int] = None,
|
||||
) -> None: ...
|
||||
def _check_parameters(self, n_samples: int) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike, y: None = None
|
||||
) -> Union[SpectralCoclustering, SpectralBiclustering]: ...
|
||||
def _svd(
|
||||
self, array: Union[ndarray, csr_matrix], n_components: int, n_discard: int
|
||||
) -> Tuple[ndarray, ndarray]: ...
|
||||
def fit(self, X: ArrayLike, y: None = None) -> Union[SpectralCoclustering, SpectralBiclustering]: ...
|
||||
def _svd(self, array: Union[ndarray, csr_matrix], n_components: int, n_discard: int) -> Tuple[ndarray, ndarray]: ...
|
||||
def _k_means(self, data: ndarray, n_clusters: int) -> Tuple[ndarray, ndarray]: ...
|
||||
def _more_tags(self): ...
|
||||
|
||||
|
@ -88,9 +84,5 @@ class SpectralBiclustering(BaseSpectral):
|
|||
) -> None: ...
|
||||
def _check_parameters(self, n_samples: int) -> None: ...
|
||||
def _fit(self, X: ndarray) -> None: ...
|
||||
def _fit_best_piecewise(
|
||||
self, vectors: ndarray, n_best: int, n_clusters: int
|
||||
) -> ndarray: ...
|
||||
def _project_and_cluster(
|
||||
self, data: ndarray, vectors: ndarray, n_clusters: int
|
||||
) -> ndarray: ...
|
||||
def _fit_best_piecewise(self, vectors: ndarray, n_best: int, n_clusters: int) -> ndarray: ...
|
||||
def _project_and_cluster(self, data: ndarray, vectors: ndarray, n_clusters: int) -> ndarray: ...
|
||||
|
|
|
@ -29,14 +29,10 @@ from .._config import config_context
|
|||
from typing import List, Optional, Tuple
|
||||
|
||||
def _iterate_sparse_X(X): ...
|
||||
def _split_node(
|
||||
node: "_CFNode", threshold: float, branching_factor: int
|
||||
) -> Tuple[_CFSubcluster, _CFSubcluster]: ...
|
||||
def _split_node(node: "_CFNode", threshold: float, branching_factor: int) -> Tuple[_CFSubcluster, _CFSubcluster]: ...
|
||||
|
||||
class _CFNode:
|
||||
def __init__(
|
||||
self, *, threshold: float, branching_factor: int, is_leaf: bool, n_features: int
|
||||
) -> None: ...
|
||||
def __init__(self, *, threshold: float, branching_factor: int, is_leaf: bool, n_features: int) -> None: ...
|
||||
def append_subcluster(self, subcluster: "_CFSubcluster") -> None: ...
|
||||
def update_split_subclusters(
|
||||
self,
|
||||
|
@ -49,15 +45,11 @@ class _CFNode:
|
|||
class _CFSubcluster:
|
||||
def __init__(self, *, linear_sum: NDArray | None = None) -> None: ...
|
||||
def update(self, subcluster: "_CFSubcluster") -> None: ...
|
||||
def merge_subcluster(
|
||||
self, nominee_cluster: "_CFSubcluster", threshold: float
|
||||
) -> bool: ...
|
||||
def merge_subcluster(self, nominee_cluster: "_CFSubcluster", threshold: float) -> bool: ...
|
||||
@property
|
||||
def radius(self): ...
|
||||
|
||||
class Birch(
|
||||
_ClassNamePrefixFeaturesOutMixin, ClusterMixin, TransformerMixin, BaseEstimator
|
||||
):
|
||||
class Birch(_ClassNamePrefixFeaturesOutMixin, ClusterMixin, TransformerMixin, BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
|
@ -70,17 +62,13 @@ class Birch(
|
|||
|
||||
# TODO: Remove in 1.2
|
||||
# mypy error: Decorated property not supported
|
||||
@deprecated( # type: ignore
|
||||
"`fit_` is deprecated in 1.0 and will be removed in 1.2."
|
||||
)
|
||||
@deprecated("`fit_` is deprecated in 1.0 and will be removed in 1.2.") # type: ignore
|
||||
@property
|
||||
def fit_(self): ...
|
||||
|
||||
# TODO: Remove in 1.2
|
||||
# mypy error: Decorated property not supported
|
||||
@deprecated( # type: ignore
|
||||
"`partial_fit_` is deprecated in 1.0 and will be removed in 1.2."
|
||||
)
|
||||
@deprecated("`partial_fit_` is deprecated in 1.0 and will be removed in 1.2.") # type: ignore
|
||||
@property
|
||||
def partial_fit_(self): ...
|
||||
def fit(self, X: NDArray | ArrayLike, y: None = None) -> "Birch": ...
|
||||
|
|
|
@ -21,9 +21,7 @@ from ..utils.validation import _is_arraylike_not_scalar
|
|||
from numpy import float64, ndarray
|
||||
|
||||
class _BisectingTree:
|
||||
def __init__(
|
||||
self, center: ndarray, indices: ndarray, score: Union[int, float64]
|
||||
) -> None: ...
|
||||
def __init__(self, center: ndarray, indices: ndarray, score: Union[int, float64]) -> None: ...
|
||||
def split(self, labels: ndarray, centers: ndarray, scores: ndarray) -> None: ...
|
||||
def get_cluster_to_bisect(self) -> "_BisectingTree": ...
|
||||
def iter_leaves(self) -> Iterator[_BisectingTree]: ...
|
||||
|
@ -41,15 +39,11 @@ class BisectingKMeans(_BaseKMeans):
|
|||
tol: float = 1e-4,
|
||||
copy_x: bool = True,
|
||||
algorithm: Literal["lloyd", "elkan"] = "lloyd",
|
||||
bisecting_strategy: Literal[
|
||||
"biggest_inertia", "largest_cluster"
|
||||
] = "biggest_inertia",
|
||||
bisecting_strategy: Literal["biggest_inertia", "largest_cluster"] = "biggest_inertia",
|
||||
) -> None: ...
|
||||
def _check_params(self, X: ndarray) -> None: ...
|
||||
def _warn_mkl_vcomp(self, n_active_threads): ...
|
||||
def _inertia_per_cluster(
|
||||
self, X: ndarray, centers: ndarray, labels: ndarray, sample_weight: ndarray
|
||||
) -> ndarray: ...
|
||||
def _inertia_per_cluster(self, X: ndarray, centers: ndarray, labels: ndarray, sample_weight: ndarray) -> ndarray: ...
|
||||
def _bisect(
|
||||
self,
|
||||
X: ndarray,
|
||||
|
|
|
@ -18,8 +18,6 @@ from ..base import BaseEstimator, ClusterMixin
|
|||
from ..utils.validation import _check_sample_weight
|
||||
from ..neighbors import NearestNeighbors
|
||||
|
||||
|
||||
|
||||
def dbscan(
|
||||
X: ArrayLike,
|
||||
eps: float = 0.5,
|
||||
|
|
|
@ -115,9 +115,7 @@ def _labels_inertia_threadpool_limit(
|
|||
return_inertia: bool = True,
|
||||
) -> Tuple[ndarray, float]: ...
|
||||
|
||||
class _BaseKMeans(
|
||||
_ClassNamePrefixFeaturesOutMixin, TransformerMixin, ClusterMixin, BaseEstimator, ABC
|
||||
):
|
||||
class _BaseKMeans(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, ClusterMixin, BaseEstimator, ABC):
|
||||
def __init__(
|
||||
self,
|
||||
n_clusters: Union[int64, int],
|
||||
|
@ -132,9 +130,7 @@ class _BaseKMeans(
|
|||
def _check_params(self, X: Union[ndarray, csr_matrix]) -> None: ...
|
||||
@abstractmethod
|
||||
def _warn_mkl_vcomp(self, n_active_threads): ...
|
||||
def _check_mkl_vcomp(
|
||||
self, X: Union[ndarray, csr_matrix], n_samples: int
|
||||
) -> None: ...
|
||||
def _check_mkl_vcomp(self, X: Union[ndarray, csr_matrix], n_samples: int) -> None: ...
|
||||
def _validate_center_shape(self, X: ndarray, centers: ndarray) -> None: ...
|
||||
def _check_test_data(self, X: ndarray) -> ndarray: ...
|
||||
def _init_centroids(
|
||||
|
@ -152,17 +148,11 @@ class _BaseKMeans(
|
|||
y: None = None,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
) -> NDArray: ...
|
||||
def predict(
|
||||
self, X: NDArray | ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> NDArray: ...
|
||||
def fit_transform(
|
||||
self, X: NDArray | ArrayLike, y=None, sample_weight: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def predict(self, X: NDArray | ArrayLike, sample_weight: ArrayLike | None = None) -> NDArray: ...
|
||||
def fit_transform(self, X: NDArray | ArrayLike, y=None, sample_weight: ArrayLike | None = None) -> np.ndarray: ...
|
||||
def transform(self, X: NDArray | ArrayLike) -> np.ndarray: ...
|
||||
def _transform(self, X): ...
|
||||
def score(
|
||||
self, X: NDArray | ArrayLike, y=None, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def score(self, X: NDArray | ArrayLike, y=None, sample_weight: ArrayLike | None = None) -> float: ...
|
||||
def _more_tags(self): ...
|
||||
|
||||
class KMeans(_BaseKMeans):
|
||||
|
|
|
@ -11,7 +11,6 @@ import numpy as np
|
|||
from numpy.random import RandomState
|
||||
import warnings
|
||||
|
||||
|
||||
from collections import defaultdict
|
||||
from ..utils.validation import check_is_fitted
|
||||
from ..utils.fixes import delayed
|
||||
|
@ -46,9 +45,7 @@ def mean_shift(
|
|||
max_iter: int = 300,
|
||||
n_jobs: int | None = None,
|
||||
) -> tuple[np.ndarray, NDArray]: ...
|
||||
def get_bin_seeds(
|
||||
X: ArrayLike, bin_size: float, min_bin_freq: int = 1
|
||||
) -> ArrayLike: ...
|
||||
def get_bin_seeds(X: ArrayLike, bin_size: float, min_bin_freq: int = 1) -> ArrayLike: ...
|
||||
|
||||
class MeanShift(ClusterMixin, BaseEstimator):
|
||||
def __init__(
|
||||
|
|
|
@ -35,14 +35,10 @@ class OPTICS(ClusterMixin, BaseEstimator):
|
|||
) -> None: ...
|
||||
def fit(self, X: NDArray, y: None = None) -> "OPTICS": ...
|
||||
|
||||
def _validate_size(
|
||||
size: Union[int, float], n_samples: int, param_name: str
|
||||
) -> None: ...
|
||||
def _validate_size(size: Union[int, float], n_samples: int, param_name: str) -> None: ...
|
||||
|
||||
# OPTICS helper functions
|
||||
def _compute_core_distances_(
|
||||
X: ndarray, neighbors: NearestNeighbors, min_samples: int, working_memory: None
|
||||
) -> ndarray: ...
|
||||
def _compute_core_distances_(X: ndarray, neighbors: NearestNeighbors, min_samples: int, working_memory: None) -> ndarray: ...
|
||||
def compute_optics_graph(
|
||||
X: NDArray,
|
||||
*,
|
||||
|
@ -85,13 +81,9 @@ def cluster_optics_xi(
|
|||
xi: float = 0.05,
|
||||
predecessor_correction: bool = True,
|
||||
) -> tuple[NDArray, np.ndarray]: ...
|
||||
def _extend_region(
|
||||
steep_point: ndarray, xward_point: ndarray, start: int64, min_samples: int
|
||||
) -> int64: ...
|
||||
def _extend_region(steep_point: ndarray, xward_point: ndarray, start: int64, min_samples: int) -> int64: ...
|
||||
def _update_filter_sdas(
|
||||
sdas: List[
|
||||
Union[Dict[str, Union[int64, float64]], Dict[str, Union[int64, float]], Any]
|
||||
],
|
||||
sdas: List[Union[Dict[str, Union[int64, float64]], Dict[str, Union[int64, float]], Any]],
|
||||
mib: float64,
|
||||
xi_complement: float,
|
||||
reachability_plot: ndarray,
|
||||
|
|
|
@ -3,7 +3,6 @@ from typing import Any, Dict, Iterator, List, Optional, Tuple, Union, Mapping, C
|
|||
from numpy.typing import ArrayLike, NDArray, DTypeLike
|
||||
from numpy import ndarray
|
||||
|
||||
|
||||
# Author: Andreas Mueller
|
||||
# Joris Van den Bossche
|
||||
# License: BSD
|
||||
|
@ -14,7 +13,6 @@ from typing import Literal, Callable, Sequence
|
|||
import numpy as np
|
||||
from scipy import sparse
|
||||
|
||||
|
||||
from ..base import BaseEstimator, clone, TransformerMixin
|
||||
from ..utils._estimator_html_repr import _VisualBlock
|
||||
from ..pipeline import _fit_transform_one, _transform_one, _name_estimators
|
||||
|
@ -76,10 +74,7 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):
|
|||
def _validate_remainder(self, X: Union[DataFrame, ndarray]) -> None: ...
|
||||
@property
|
||||
def named_transformers_(self): ...
|
||||
@deprecated(
|
||||
"get_feature_names is deprecated in 1.0 and will be removed "
|
||||
"in 1.2. Please use get_feature_names_out instead."
|
||||
)
|
||||
@deprecated("get_feature_names is deprecated in 1.0 and will be removed " "in 1.2. Please use get_feature_names_out instead.")
|
||||
def get_feature_names(self) -> ArrayLike: ...
|
||||
def _get_feature_name_out_for_transformer(
|
||||
self,
|
||||
|
@ -88,9 +83,7 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):
|
|||
column: List[str],
|
||||
feature_names_in: ndarray,
|
||||
) -> ndarray: ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
def _update_fitted_transformers(
|
||||
self,
|
||||
transformers: Union[
|
||||
|
@ -119,12 +112,8 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):
|
|||
fitted: bool = False,
|
||||
column_as_strings: bool = False,
|
||||
) -> List[Any]: ...
|
||||
def fit(
|
||||
self, X: ArrayLike | DataFrame, y: ArrayLike | None = None
|
||||
) -> ColumnTransformer: ...
|
||||
def fit_transform(
|
||||
self, X: ArrayLike | DataFrame, y: ArrayLike | None = None
|
||||
) -> NDArray | ArrayLike: ...
|
||||
def fit(self, X: ArrayLike | DataFrame, y: ArrayLike | None = None) -> ColumnTransformer: ...
|
||||
def fit_transform(self, X: ArrayLike | DataFrame, y: ArrayLike | None = None) -> NDArray | ArrayLike: ...
|
||||
def transform(self, X: ArrayLike | DataFrame) -> NDArray | ArrayLike: ...
|
||||
def _hstack(self, Xs: List[Union[csr_matrix, ndarray]]) -> ndarray: ...
|
||||
def _sk_visual_block_(self): ...
|
||||
|
@ -132,9 +121,7 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):
|
|||
def _check_X(X: Union[DataFrame, ndarray]) -> Union[DataFrame, ndarray]: ...
|
||||
def _is_empty_column_selection(column: Union[int, List[str]]) -> bool: ...
|
||||
def _get_transformer_list(
|
||||
estimators: Tuple[
|
||||
Tuple[Pipeline, Tuple[str, str]], Tuple[Pipeline, Tuple[str, str]]
|
||||
]
|
||||
estimators: Tuple[Tuple[Pipeline, Tuple[str, str]], Tuple[Pipeline, Tuple[str, str]]]
|
||||
) -> List[Tuple[str, Pipeline, Tuple[str, str]]]: ...
|
||||
def make_column_transformer(
|
||||
*transformers,
|
||||
|
|
|
@ -27,6 +27,4 @@ class EllipticEnvelope(OutlierMixin, MinCovDet):
|
|||
def decision_function(self, X: ArrayLike) -> NDArray: ...
|
||||
def score_samples(self, X: ArrayLike) -> ArrayLike: ...
|
||||
def predict(self, X: ArrayLike) -> NDArray: ...
|
||||
def score(
|
||||
self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def score(self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None) -> float: ...
|
||||
|
|
|
@ -23,9 +23,7 @@ def log_likelihood(emp_cov: NDArray, precision: NDArray) -> float: ...
|
|||
def empirical_covariance(X: NDArray, *, assume_centered: bool = False) -> NDArray: ...
|
||||
|
||||
class EmpiricalCovariance(BaseEstimator):
|
||||
def __init__(
|
||||
self, *, store_precision: bool = True, assume_centered: bool = False
|
||||
) -> None: ...
|
||||
def __init__(self, *, store_precision: bool = True, assume_centered: bool = False) -> None: ...
|
||||
def _set_covariance(self, covariance: ndarray) -> None: ...
|
||||
def get_precision(self) -> ArrayLike: ...
|
||||
def fit(self, X: ArrayLike, y: None = None) -> "EmpiricalCovariance": ...
|
||||
|
|
|
@ -11,7 +11,6 @@ import numbers
|
|||
import numpy as np
|
||||
from scipy import linalg
|
||||
|
||||
|
||||
from . import empirical_covariance, EmpiricalCovariance
|
||||
from ..utils.extmath import fast_logdet
|
||||
from ..utils import check_random_state, check_array
|
||||
|
@ -72,10 +71,6 @@ class MinCovDet(EmpiricalCovariance):
|
|||
support_fraction: float | None = None,
|
||||
random_state: int | RandomState | None = None,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike, y: None = None
|
||||
) -> Union[MinCovDet, EllipticEnvelope]: ...
|
||||
def fit(self, X: ArrayLike, y: None = None) -> Union[MinCovDet, EllipticEnvelope]: ...
|
||||
def correct_covariance(self, data: ArrayLike) -> NDArray: ...
|
||||
def reweight_covariance(
|
||||
self, data: ArrayLike
|
||||
) -> tuple[NDArray, NDArray, np.ndarray]: ...
|
||||
def reweight_covariance(self, data: ArrayLike) -> tuple[NDArray, NDArray, np.ndarray]: ...
|
||||
|
|
|
@ -21,32 +21,16 @@ from numpy import float64, ndarray
|
|||
def shrunk_covariance(emp_cov: ArrayLike, shrinkage: float = 0.1) -> NDArray: ...
|
||||
|
||||
class ShrunkCovariance(EmpiricalCovariance):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
store_precision: bool = True,
|
||||
assume_centered: bool = False,
|
||||
shrinkage: float = 0.1
|
||||
) -> None: ...
|
||||
def __init__(self, *, store_precision: bool = True, assume_centered: bool = False, shrinkage: float = 0.1) -> None: ...
|
||||
def fit(self, X: ArrayLike, y: None = None) -> "ShrunkCovariance": ...
|
||||
|
||||
# Ledoit-Wolf estimator
|
||||
|
||||
def ledoit_wolf_shrinkage(
|
||||
X: ArrayLike, assume_centered: bool = False, block_size: int = 1000
|
||||
) -> float: ...
|
||||
def ledoit_wolf(
|
||||
X: ArrayLike, *, assume_centered: bool = False, block_size: int = 1000
|
||||
) -> tuple[NDArray, float]: ...
|
||||
def ledoit_wolf_shrinkage(X: ArrayLike, assume_centered: bool = False, block_size: int = 1000) -> float: ...
|
||||
def ledoit_wolf(X: ArrayLike, *, assume_centered: bool = False, block_size: int = 1000) -> tuple[NDArray, float]: ...
|
||||
|
||||
class LedoitWolf(EmpiricalCovariance):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
store_precision: bool = True,
|
||||
assume_centered: bool = False,
|
||||
block_size: int = 1000
|
||||
) -> None: ...
|
||||
def __init__(self, *, store_precision: bool = True, assume_centered: bool = False, block_size: int = 1000) -> None: ...
|
||||
def fit(self, X: ArrayLike, y: None = None) -> "LedoitWolf": ...
|
||||
|
||||
# OAS estimator
|
||||
|
|
|
@ -60,15 +60,9 @@ class _PLS(
|
|||
tol=1e-06,
|
||||
copy=True,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike, Y: ArrayLike
|
||||
) -> Union[PLSCanonical, CCA, PLSRegression]: ...
|
||||
def transform(
|
||||
self, X: ArrayLike, Y: ArrayLike | None = None, copy: bool = True
|
||||
) -> ArrayLike | tuple[ArrayLike, ...]: ...
|
||||
def inverse_transform(
|
||||
self, X: ArrayLike, Y: ArrayLike | None = None
|
||||
) -> tuple[NDArray, NDArray]: ...
|
||||
def fit(self, X: ArrayLike, Y: ArrayLike) -> Union[PLSCanonical, CCA, PLSRegression]: ...
|
||||
def transform(self, X: ArrayLike, Y: ArrayLike | None = None, copy: bool = True) -> ArrayLike | tuple[ArrayLike, ...]: ...
|
||||
def inverse_transform(self, X: ArrayLike, Y: ArrayLike | None = None) -> tuple[NDArray, NDArray]: ...
|
||||
def predict(self, X: ArrayLike, copy: bool = True) -> NDArray: ...
|
||||
def fit_transform(self, X: ArrayLike, y: ArrayLike | None = None) -> NDArray: ...
|
||||
@property
|
||||
|
@ -127,13 +121,7 @@ class CCA(_PLS):
|
|||
) -> None: ...
|
||||
|
||||
class PLSSVD(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
||||
def __init__(
|
||||
self, n_components: int = 2, *, scale: bool = True, copy: bool = True
|
||||
): ...
|
||||
def __init__(self, n_components: int = 2, *, scale: bool = True, copy: bool = True): ...
|
||||
def fit(self, X: ArrayLike, Y: ArrayLike) -> Any: ...
|
||||
def transform(
|
||||
self, X: ArrayLike, Y: ArrayLike | None = None
|
||||
) -> ArrayLike | tuple[ArrayLike, ...]: ...
|
||||
def fit_transform(
|
||||
self, X: ArrayLike, y: ArrayLike | None = None
|
||||
) -> ArrayLike | tuple[ArrayLike, ...]: ...
|
||||
def transform(self, X: ArrayLike, Y: ArrayLike | None = None) -> ArrayLike | tuple[ArrayLike, ...]: ...
|
||||
def fit_transform(self, X: ArrayLike, y: ArrayLike | None = None) -> ArrayLike | tuple[ArrayLike, ...]: ...
|
||||
|
|
|
@ -14,12 +14,8 @@ from ..utils import (
|
|||
is_scalar_nan,
|
||||
)
|
||||
|
||||
def _split_sparse_columns(
|
||||
arff_data: ArffSparseDataType, include_columns: List
|
||||
) -> ArffSparseDataType: ...
|
||||
def _sparse_data_to_array(
|
||||
arff_data: ArffSparseDataType, include_columns: List
|
||||
) -> np.ndarray: ...
|
||||
def _split_sparse_columns(arff_data: ArffSparseDataType, include_columns: List) -> ArffSparseDataType: ...
|
||||
def _sparse_data_to_array(arff_data: ArffSparseDataType, include_columns: List) -> np.ndarray: ...
|
||||
def _feature_to_dtype(feature: Dict[str, str]): ...
|
||||
def _convert_arff_data(
|
||||
arff: ArffContainerType,
|
||||
|
@ -27,9 +23,7 @@ def _convert_arff_data(
|
|||
col_slice_y: List[int],
|
||||
shape: Optional[Tuple] = None,
|
||||
) -> Tuple: ...
|
||||
def _convert_arff_data_dataframe(
|
||||
arff: ArffContainerType, columns: List, features_dict: Dict[str, Any]
|
||||
) -> Tuple: ...
|
||||
def _convert_arff_data_dataframe(arff: ArffContainerType, columns: List, features_dict: Dict[str, Any]) -> Tuple: ...
|
||||
def _liac_arff_parser(
|
||||
arff_container,
|
||||
output_arrays_type,
|
||||
|
|
|
@ -76,24 +76,12 @@ def load_gzip_compressed_csv_data(
|
|||
**kwargs,
|
||||
) -> tuple[NDArray, str]: ...
|
||||
def load_descr(descr_file_name: str, *, descr_module: str | module = ...) -> str: ...
|
||||
def load_wine(
|
||||
*, return_X_y: bool = False, as_frame: bool = False
|
||||
) -> tuple[Bunch, tuple]: ...
|
||||
def load_iris(
|
||||
*, return_X_y: bool = False, as_frame: bool = False
|
||||
) -> tuple[Bunch, tuple]: ...
|
||||
def load_breast_cancer(
|
||||
*, return_X_y: bool = False, as_frame: bool = False
|
||||
) -> tuple[Bunch, tuple]: ...
|
||||
def load_digits(
|
||||
*, n_class: int = 10, return_X_y: bool = False, as_frame: bool = False
|
||||
) -> tuple[Bunch, tuple]: ...
|
||||
def load_diabetes(
|
||||
*, return_X_y: bool = False, as_frame: bool = False, scaled: bool = True
|
||||
) -> tuple[Bunch, tuple]: ...
|
||||
def load_linnerud(
|
||||
*, return_X_y: bool = False, as_frame: bool = False
|
||||
) -> tuple[Bunch, tuple]: ...
|
||||
def load_wine(*, return_X_y: bool = False, as_frame: bool = False) -> tuple[Bunch, tuple]: ...
|
||||
def load_iris(*, return_X_y: bool = False, as_frame: bool = False) -> tuple[Bunch, tuple]: ...
|
||||
def load_breast_cancer(*, return_X_y: bool = False, as_frame: bool = False) -> tuple[Bunch, tuple]: ...
|
||||
def load_digits(*, n_class: int = 10, return_X_y: bool = False, as_frame: bool = False) -> tuple[Bunch, tuple]: ...
|
||||
def load_diabetes(*, return_X_y: bool = False, as_frame: bool = False, scaled: bool = True) -> tuple[Bunch, tuple]: ...
|
||||
def load_linnerud(*, return_X_y: bool = False, as_frame: bool = False) -> tuple[Bunch, tuple]: ...
|
||||
@deprecated(
|
||||
r"""`load_boston` is deprecated in 1.0 and will be removed in 1.2.
|
||||
|
||||
|
|
|
@ -27,9 +27,5 @@ ARCHIVE = ...
|
|||
logger = ...
|
||||
|
||||
def fetch_california_housing(
|
||||
*,
|
||||
data_home: str | None = None,
|
||||
download_if_missing: bool = True,
|
||||
return_X_y: bool = False,
|
||||
as_frame: bool = False
|
||||
*, data_home: str | None = None, download_if_missing: bool = True, return_X_y: bool = False, as_frame: bool = False
|
||||
) -> tuple[Bunch, tuple]: ...
|
||||
|
|
|
@ -42,18 +42,14 @@ TARGETS = ...
|
|||
# local disk caching, and image decoding.
|
||||
#
|
||||
|
||||
def _check_fetch_lfw(
|
||||
data_home: None = None, funneled: bool = True, download_if_missing: bool = True
|
||||
) -> Tuple[str, str]: ...
|
||||
def _check_fetch_lfw(data_home: None = None, funneled: bool = True, download_if_missing: bool = True) -> Tuple[str, str]: ...
|
||||
def _load_imgs(file_paths, slice_, color, resize): ...
|
||||
|
||||
#
|
||||
# Task #1: Face Identification on picture with names
|
||||
#
|
||||
|
||||
def _fetch_lfw_people(
|
||||
data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0
|
||||
): ...
|
||||
def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): ...
|
||||
def fetch_lfw_people(
|
||||
*,
|
||||
data_home: str | None = None,
|
||||
|
@ -70,9 +66,7 @@ def fetch_lfw_people(
|
|||
# Task #2: Face Verification on pairs of face pictures
|
||||
#
|
||||
|
||||
def _fetch_lfw_pairs(
|
||||
index_file_path, data_folder_path, slice_=None, color=False, resize=None
|
||||
): ...
|
||||
def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): ...
|
||||
def fetch_lfw_pairs(
|
||||
*,
|
||||
subset: Literal["train", "test", "10_folds"] = "train",
|
||||
|
|
|
@ -35,12 +35,8 @@ OpenmlFeaturesType = ...
|
|||
|
||||
def _get_local_path(openml_path: str, data_home: str) -> str: ...
|
||||
def _retry_with_clean_cache(openml_path: str, data_home: Optional[str]) -> Callable: ...
|
||||
def _retry_on_network_error(
|
||||
n_retries: int = 3, delay: float = 1.0, url: str = ""
|
||||
) -> Callable: ...
|
||||
def _open_openml_url(
|
||||
openml_path: str, data_home: Optional[str], n_retries: int = 3, delay: float = 1.0
|
||||
): ...
|
||||
def _retry_on_network_error(n_retries: int = 3, delay: float = 1.0, url: str = "") -> Callable: ...
|
||||
def _open_openml_url(openml_path: str, data_home: Optional[str], n_retries: int = 3, delay: float = 1.0): ...
|
||||
|
||||
class OpenMLError(ValueError):
|
||||
pass
|
||||
|
|
|
@ -54,9 +54,7 @@ def make_multilabel_classification(
|
|||
return_distributions: bool = False,
|
||||
random_state: int | RandomState | None = None,
|
||||
) -> tuple[NDArray, NDArray, NDArray, np.ndarray]: ...
|
||||
def make_hastie_10_2(
|
||||
n_samples: int = 12000, *, random_state: int | RandomState | None = None
|
||||
) -> tuple[np.ndarray, NDArray]: ...
|
||||
def make_hastie_10_2(n_samples: int = 12000, *, random_state: int | RandomState | None = None) -> tuple[np.ndarray, NDArray]: ...
|
||||
def make_regression(
|
||||
n_samples: int = 100,
|
||||
n_features: int = 100,
|
||||
|
@ -142,9 +140,7 @@ def make_sparse_uncorrelated(
|
|||
*,
|
||||
random_state: int | RandomState | None = None,
|
||||
) -> tuple[NDArray, NDArray]: ...
|
||||
def make_spd_matrix(
|
||||
n_dim: int, *, random_state: int | RandomState | None = None
|
||||
) -> np.ndarray: ...
|
||||
def make_spd_matrix(n_dim: int, *, random_state: int | RandomState | None = None) -> np.ndarray: ...
|
||||
def make_sparse_spd_matrix(
|
||||
dim: int = 1,
|
||||
*,
|
||||
|
|
|
@ -36,6 +36,4 @@ logger = ...
|
|||
def _load_coverage(F, header_length=6, dtype=np.int16): ...
|
||||
def _load_csv(F): ...
|
||||
def construct_grids(batch: Batch) -> NDArray: ...
|
||||
def fetch_species_distributions(
|
||||
*, data_home: str | None = None, download_if_missing: bool = True
|
||||
) -> Bunch: ...
|
||||
def fetch_species_distributions(*, data_home: str | None = None, download_if_missing: bool = True) -> Bunch: ...
|
||||
|
|
|
@ -17,9 +17,7 @@ from ..base import BaseEstimator, TransformerMixin, _ClassNamePrefixFeaturesOutM
|
|||
from ..utils.validation import check_is_fitted
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
class _BasePCA(
|
||||
_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator, metaclass=ABCMeta
|
||||
):
|
||||
class _BasePCA(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator, metaclass=ABCMeta):
|
||||
def get_covariance(self) -> NDArray: ...
|
||||
def get_precision(self) -> NDArray: ...
|
||||
@abstractmethod
|
||||
|
|
|
@ -48,9 +48,7 @@ def sparse_encode(
|
|||
*,
|
||||
gram: NDArray | None = None,
|
||||
cov: NDArray | None = None,
|
||||
algorithm: Literal[
|
||||
"lasso_lars", "lasso_cd", "lars", "omp", "threshold"
|
||||
] = "lasso_lars",
|
||||
algorithm: Literal["lasso_lars", "lasso_cd", "lars", "omp", "threshold"] = "lasso_lars",
|
||||
n_nonzero_coefs: int | None = None,
|
||||
alpha: float | None = None,
|
||||
copy_cov: bool = True,
|
||||
|
@ -96,21 +94,21 @@ def dict_learning_online(
|
|||
n_components: int | None = 2,
|
||||
*,
|
||||
alpha: float = 1,
|
||||
n_iter: int|str = "deprecated",
|
||||
n_iter: int | str = "deprecated",
|
||||
max_iter: int | None = None,
|
||||
return_code: bool = True,
|
||||
dict_init: NDArray | None = None,
|
||||
callback: Callable | None = None,
|
||||
batch_size: int|str = "warn",
|
||||
batch_size: int | str = "warn",
|
||||
verbose: bool = False,
|
||||
shuffle: bool = True,
|
||||
n_jobs: int | None = None,
|
||||
method: Literal["lars", "cd"] = "lars",
|
||||
iter_offset: int|str = "deprecated",
|
||||
iter_offset: int | str = "deprecated",
|
||||
random_state: int | RandomState | None = None,
|
||||
return_inner_stats: bool|str = "deprecated",
|
||||
inner_stats: tuple[NDArray, ...]|str = "deprecated",
|
||||
return_n_iter: bool|str = "deprecated",
|
||||
return_inner_stats: bool | str = "deprecated",
|
||||
inner_stats: tuple[NDArray, ...] | str = "deprecated",
|
||||
return_n_iter: bool | str = "deprecated",
|
||||
positive_dict: bool = False,
|
||||
positive_code: bool = False,
|
||||
method_max_iter: int = 1000,
|
||||
|
@ -140,9 +138,7 @@ class SparseCoder(_BaseSparseCoding, BaseEstimator):
|
|||
self,
|
||||
dictionary: NDArray,
|
||||
*,
|
||||
transform_algorithm: Literal[
|
||||
"lasso_lars", "lasso_cd", "lars", "omp", "threshold"
|
||||
] = "omp",
|
||||
transform_algorithm: Literal["lasso_lars", "lasso_cd", "lars", "omp", "threshold"] = "omp",
|
||||
transform_n_nonzero_coefs: int | None = None,
|
||||
transform_alpha: float | None = None,
|
||||
split_sign: bool = False,
|
||||
|
@ -169,9 +165,7 @@ class DictionaryLearning(_BaseSparseCoding, BaseEstimator):
|
|||
max_iter: int = 1000,
|
||||
tol: float = 1e-8,
|
||||
fit_algorithm: Literal["lars", "cd"] = "lars",
|
||||
transform_algorithm: Literal[
|
||||
"lasso_lars", "lasso_cd", "lars", "omp", "threshold"
|
||||
] = "omp",
|
||||
transform_algorithm: Literal["lasso_lars", "lasso_cd", "lars", "omp", "threshold"] = "omp",
|
||||
transform_n_nonzero_coefs: int | None = None,
|
||||
transform_alpha: float | None = None,
|
||||
n_jobs: int | None = None,
|
||||
|
@ -195,16 +189,14 @@ class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):
|
|||
n_components: int | None = None,
|
||||
*,
|
||||
alpha: float = 1,
|
||||
n_iter: int|str = "deprecated",
|
||||
n_iter: int | str = "deprecated",
|
||||
max_iter: int | None = None,
|
||||
fit_algorithm: Literal["lars", "cd"] = "lars",
|
||||
n_jobs: int | None = None,
|
||||
batch_size: int|str = "warn",
|
||||
batch_size: int | str = "warn",
|
||||
shuffle: bool = True,
|
||||
dict_init: NDArray | None = None,
|
||||
transform_algorithm: Literal[
|
||||
"lasso_lars", "lasso_cd", "lars", "omp", "threshold"
|
||||
] = "omp",
|
||||
transform_algorithm: Literal["lasso_lars", "lasso_cd", "lars", "omp", "threshold"] = "omp",
|
||||
transform_n_nonzero_coefs: int | None = None,
|
||||
transform_alpha: float | None = None,
|
||||
verbose: bool | int = False,
|
||||
|
@ -217,29 +209,19 @@ class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):
|
|||
tol: float = 1e-3,
|
||||
max_no_improvement: int = 10,
|
||||
) -> None: ...
|
||||
@deprecated( # type: ignore
|
||||
"The attribute `iter_offset_` is deprecated in 1.1 and will be removed in 1.3."
|
||||
)
|
||||
@deprecated("The attribute `iter_offset_` is deprecated in 1.1 and will be removed in 1.3.") # type: ignore
|
||||
@property
|
||||
def iter_offset_(self): ...
|
||||
@deprecated( # type: ignore
|
||||
"The attribute `random_state_` is deprecated in 1.1 and will be removed in 1.3."
|
||||
)
|
||||
@deprecated("The attribute `random_state_` is deprecated in 1.1 and will be removed in 1.3.") # type: ignore
|
||||
@property
|
||||
def random_state_(self): ...
|
||||
@deprecated( # type: ignore
|
||||
"The attribute `inner_stats_` is deprecated in 1.1 and will be removed in 1.3."
|
||||
)
|
||||
@deprecated("The attribute `inner_stats_` is deprecated in 1.1 and will be removed in 1.3.") # type: ignore
|
||||
@property
|
||||
def inner_stats_(self): ...
|
||||
def _check_params(self, X: ndarray) -> None: ...
|
||||
def _initialize_dict(self, X: ndarray, random_state: RandomState) -> ndarray: ...
|
||||
def _update_inner_stats(
|
||||
self, X: ndarray, code: ndarray, batch_size: int, step: int
|
||||
) -> None: ...
|
||||
def _minibatch_step(
|
||||
self, X: ndarray, dictionary: ndarray, random_state: RandomState, step: int
|
||||
) -> float64: ...
|
||||
def _update_inner_stats(self, X: ndarray, code: ndarray, batch_size: int, step: int) -> None: ...
|
||||
def _minibatch_step(self, X: ndarray, dictionary: ndarray, random_state: RandomState, step: int) -> float64: ...
|
||||
def _check_convergence(
|
||||
self,
|
||||
X: ndarray,
|
||||
|
@ -251,9 +233,7 @@ class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):
|
|||
n_steps: int,
|
||||
) -> bool: ...
|
||||
def fit(self, X: ArrayLike, y: None = None) -> "MiniBatchDictionaryLearning": ...
|
||||
def partial_fit(
|
||||
self, X: ArrayLike, y=None, iter_offset: int|str = "deprecated"
|
||||
) -> Any: ...
|
||||
def partial_fit(self, X: ArrayLike, y=None, iter_offset: int | str = "deprecated") -> Any: ...
|
||||
@property
|
||||
def _n_features_out(self): ...
|
||||
def _more_tags(self): ...
|
||||
|
|
|
@ -40,12 +40,8 @@ class FactorAnalysis(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEst
|
|||
def get_precision(self) -> NDArray: ...
|
||||
def score_samples(self, X: NDArray) -> NDArray: ...
|
||||
def score(self, X: NDArray, y: None = None) -> float: ...
|
||||
def _rotate(
|
||||
self, components: ndarray, n_components: None = None, tol: float = 1e-6
|
||||
) -> ndarray: ...
|
||||
def _rotate(self, components: ndarray, n_components: None = None, tol: float = 1e-6) -> ndarray: ...
|
||||
@property
|
||||
def _n_features_out(self): ...
|
||||
|
||||
def _ortho_rotation(
|
||||
components: ndarray, method: str = "varimax", tol: float = 1e-6, max_iter: int = 100
|
||||
) -> ndarray: ...
|
||||
def _ortho_rotation(components: ndarray, method: str = "varimax", tol: float = 1e-6, max_iter: int = 100) -> ndarray: ...
|
||||
|
|
|
@ -34,9 +34,7 @@ def _ica_par(
|
|||
|
||||
# Some standard non-linear functions.
|
||||
# XXX: these should be optimized, as they can be a bottleneck.
|
||||
def _logcosh(
|
||||
x: ndarray, fun_args: Optional[Dict[Any, Any]] = None
|
||||
) -> Tuple[ndarray, ndarray]: ...
|
||||
def _logcosh(x: ndarray, fun_args: Optional[Dict[Any, Any]] = None) -> Tuple[ndarray, ndarray]: ...
|
||||
def _exp(x, fun_args): ...
|
||||
def _cube(x, fun_args): ...
|
||||
def fastica(
|
||||
|
|
|
@ -15,15 +15,8 @@ from numpy import ndarray
|
|||
|
||||
class IncrementalPCA(_BasePCA):
|
||||
def __init__(
|
||||
self,
|
||||
n_components: int | None = None,
|
||||
*,
|
||||
whiten: bool = False,
|
||||
copy: bool = True,
|
||||
batch_size: int | None = None
|
||||
self, n_components: int | None = None, *, whiten: bool = False, copy: bool = True, batch_size: int | None = None
|
||||
) -> None: ...
|
||||
def fit(self, X: NDArray | ArrayLike, y: None = None) -> "IncrementalPCA": ...
|
||||
def partial_fit(
|
||||
self, X: ArrayLike, y: None = None, check_input: bool = True
|
||||
) -> "IncrementalPCA": ...
|
||||
def partial_fit(self, X: ArrayLike, y: None = None, check_input: bool = True) -> "IncrementalPCA": ...
|
||||
def transform(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
|
|
|
@ -30,9 +30,7 @@ class KernelPCA(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimato
|
|||
self,
|
||||
n_components: int | None = None,
|
||||
*,
|
||||
kernel: Literal[
|
||||
"linear", "poly", "rbf", "sigmoid", "cosine", "precomputed"
|
||||
] = "linear",
|
||||
kernel: Literal["linear", "poly", "rbf", "sigmoid", "cosine", "precomputed"] = "linear",
|
||||
gamma: float | None = None,
|
||||
degree: int = 3,
|
||||
coef0: float = 1,
|
||||
|
@ -52,16 +50,14 @@ class KernelPCA(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimato
|
|||
# TODO: Remove in 1.2
|
||||
# mypy error: Decorated property not supported
|
||||
@deprecated( # type: ignore
|
||||
"Attribute `lambdas_` was deprecated in version 1.0 and will be "
|
||||
"removed in 1.2. Use `eigenvalues_` instead."
|
||||
"Attribute `lambdas_` was deprecated in version 1.0 and will be " "removed in 1.2. Use `eigenvalues_` instead."
|
||||
)
|
||||
@property
|
||||
def lambdas_(self): ...
|
||||
|
||||
# mypy error: Decorated property not supported
|
||||
@deprecated( # type: ignore
|
||||
"Attribute `alphas_` was deprecated in version 1.0 and will be "
|
||||
"removed in 1.2. Use `eigenvectors_` instead."
|
||||
"Attribute `alphas_` was deprecated in version 1.0 and will be " "removed in 1.2. Use `eigenvectors_` instead."
|
||||
)
|
||||
@property
|
||||
def alphas_(self): ...
|
||||
|
@ -69,9 +65,7 @@ class KernelPCA(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimato
|
|||
def _fit_transform(self, K: ndarray) -> ndarray: ...
|
||||
def _fit_inverse_transform(self, X_transformed: ndarray, X: ndarray) -> None: ...
|
||||
def fit(self, X: NDArray | ArrayLike, y: None = None) -> "KernelPCA": ...
|
||||
def fit_transform(
|
||||
self, X: NDArray | ArrayLike, y: None = None, **params
|
||||
) -> NDArray: ...
|
||||
def fit_transform(self, X: NDArray | ArrayLike, y: None = None, **params) -> NDArray: ...
|
||||
def transform(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
def inverse_transform(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
def _more_tags(self): ...
|
||||
|
|
|
@ -14,7 +14,6 @@ from ..utils.validation import check_non_negative
|
|||
from ..utils.validation import check_is_fitted
|
||||
from ..utils.fixes import delayed
|
||||
|
||||
|
||||
from numpy import float64, ndarray
|
||||
from numpy.random import RandomState
|
||||
from scipy.sparse._csr import csr_matrix
|
||||
|
@ -31,9 +30,7 @@ def _update_doc_distribution(
|
|||
random_state: Optional[RandomState],
|
||||
) -> Union[Tuple[ndarray, ndarray], Tuple[ndarray, None]]: ...
|
||||
|
||||
class LatentDirichletAllocation(
|
||||
_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator
|
||||
):
|
||||
class LatentDirichletAllocation(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
n_components: int = 10,
|
||||
|
@ -46,7 +43,7 @@ class LatentDirichletAllocation(
|
|||
max_iter: int = 10,
|
||||
batch_size: int = 128,
|
||||
evaluate_every: int = ...,
|
||||
total_samples: float|int = 1e6,
|
||||
total_samples: float | int = 1e6,
|
||||
perp_tol: float = 1e-1,
|
||||
mean_change_tol: float = 1e-3,
|
||||
max_doc_update_iter: int = 100,
|
||||
|
@ -61,28 +58,22 @@ class LatentDirichletAllocation(
|
|||
X: csr_matrix,
|
||||
cal_sstats: bool,
|
||||
random_init: bool,
|
||||
parallel = None,
|
||||
parallel=None,
|
||||
) -> Union[Tuple[ndarray, ndarray], Tuple[ndarray, None]]: ...
|
||||
def _em_step(
|
||||
self,
|
||||
X: csr_matrix,
|
||||
total_samples: int,
|
||||
batch_update: bool,
|
||||
parallel = None,
|
||||
parallel=None,
|
||||
) -> None: ...
|
||||
def _more_tags(self): ...
|
||||
def _check_non_neg_array(
|
||||
self, X: csr_matrix, reset_n_features: bool, whom: str
|
||||
) -> csr_matrix: ...
|
||||
def _check_non_neg_array(self, X: csr_matrix, reset_n_features: bool, whom: str) -> csr_matrix: ...
|
||||
def partial_fit(self, X: NDArray | ArrayLike, y=None): ...
|
||||
def fit(
|
||||
self, X: NDArray | ArrayLike, y: None = None
|
||||
) -> "LatentDirichletAllocation": ...
|
||||
def fit(self, X: NDArray | ArrayLike, y: None = None) -> "LatentDirichletAllocation": ...
|
||||
def _unnormalized_transform(self, X): ...
|
||||
def transform(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
def _approx_bound(
|
||||
self, X: csr_matrix, doc_topic_distr: ndarray, sub_sampling: bool
|
||||
) -> float64: ...
|
||||
def _approx_bound(self, X: csr_matrix, doc_topic_distr: ndarray, sub_sampling: bool) -> float64: ...
|
||||
def score(self, X: NDArray | ArrayLike, y=None) -> float: ...
|
||||
def _perplexity_precomp_distr(
|
||||
self,
|
||||
|
@ -90,8 +81,6 @@ class LatentDirichletAllocation(
|
|||
doc_topic_distr: Optional[ndarray] = None,
|
||||
sub_sampling: bool = False,
|
||||
) -> float64: ...
|
||||
def perplexity(
|
||||
self, X: NDArray | ArrayLike, sub_sampling: bool = False
|
||||
) -> float: ...
|
||||
def perplexity(self, X: NDArray | ArrayLike, sub_sampling: bool = False) -> float: ...
|
||||
@property
|
||||
def _n_features_out(self): ...
|
||||
|
|
|
@ -94,9 +94,7 @@ def _multiplicative_update_w(
|
|||
HHt: None = None,
|
||||
XHt: None = None,
|
||||
update_H: bool = True,
|
||||
) -> Union[
|
||||
Tuple[ndarray, ndarray, None, None], Tuple[ndarray, None, ndarray, ndarray]
|
||||
]: ...
|
||||
) -> Union[Tuple[ndarray, ndarray, None, None], Tuple[ndarray, None, ndarray, ndarray]]: ...
|
||||
def _multiplicative_update_h(
|
||||
X: csr_matrix,
|
||||
W: ndarray,
|
||||
|
@ -113,7 +111,7 @@ def _fit_multiplicative_update(
|
|||
X: csr_matrix,
|
||||
W: ndarray,
|
||||
H: ndarray,
|
||||
beta_loss: int|str = "frobenius",
|
||||
beta_loss: int | str = "frobenius",
|
||||
max_iter: int = 200,
|
||||
tol: float = 1e-4,
|
||||
l1_reg_W: float = 0,
|
||||
|
@ -132,15 +130,14 @@ def non_negative_factorization(
|
|||
init: Literal["random", "nndsvd", "nndsvda", "nndsvdar", "custom"] | None = None,
|
||||
update_H: bool = True,
|
||||
solver: Literal["cd", "mu"] = "cd",
|
||||
beta_loss: float
|
||||
| Literal["frobenius", "kullback-leibler", "itakura-saito"] = "frobenius",
|
||||
beta_loss: float | Literal["frobenius", "kullback-leibler", "itakura-saito"] = "frobenius",
|
||||
tol: float = 1e-4,
|
||||
max_iter: int = 200,
|
||||
alpha: float|str = "deprecated",
|
||||
alpha: float | str = "deprecated",
|
||||
alpha_W: float = 0.0,
|
||||
alpha_H: float | Literal["same"] = "same",
|
||||
l1_ratio: float = 0.0,
|
||||
regularization: Literal["both", "components", "transformation"]|str = "deprecated",
|
||||
regularization: Literal["both", "components", "transformation"] | str = "deprecated",
|
||||
random_state: int | RandomState | None = None,
|
||||
verbose: int = 0,
|
||||
shuffle: bool = False,
|
||||
|
@ -151,27 +148,22 @@ class NMF(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
|||
self,
|
||||
n_components: int | None = None,
|
||||
*,
|
||||
init: Literal["random", "nndsvd", "nndsvda", "nndsvdar", "custom"]
|
||||
| None = None,
|
||||
init: Literal["random", "nndsvd", "nndsvda", "nndsvdar", "custom"] | None = None,
|
||||
solver: Literal["cd", "mu"] = "cd",
|
||||
beta_loss: float
|
||||
| Literal["frobenius", "kullback-leibler", "itakura-saito"] = "frobenius",
|
||||
beta_loss: float | Literal["frobenius", "kullback-leibler", "itakura-saito"] = "frobenius",
|
||||
tol: float = 1e-4,
|
||||
max_iter: int = 200,
|
||||
random_state: int | RandomState | None = None,
|
||||
alpha: float|str = "deprecated",
|
||||
alpha: float | str = "deprecated",
|
||||
alpha_W: float = 0.0,
|
||||
alpha_H: float | Literal["same"] = "same",
|
||||
l1_ratio: float = 0.0,
|
||||
verbose: int = 0,
|
||||
shuffle: bool = False,
|
||||
regularization: None
|
||||
| Literal["both", "components", "transformation"]|str = "deprecated",
|
||||
regularization: None | Literal["both", "components", "transformation"] | str = "deprecated",
|
||||
) -> None: ...
|
||||
def _more_tags(self) -> Dict[str, bool]: ...
|
||||
def _check_params(
|
||||
self, X: Union[ndarray, csr_matrix]
|
||||
) -> Union[NMF, MiniBatchNMF]: ...
|
||||
def _check_params(self, X: Union[ndarray, csr_matrix]) -> Union[NMF, MiniBatchNMF]: ...
|
||||
def _check_w_h(
|
||||
self,
|
||||
X: Union[ndarray, csr_matrix],
|
||||
|
@ -179,9 +171,7 @@ class NMF(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
|||
H: Optional[ndarray],
|
||||
update_H: bool,
|
||||
) -> Tuple[ndarray, ndarray]: ...
|
||||
def _scale_regularization(
|
||||
self, X: Union[ndarray, csr_matrix]
|
||||
) -> Tuple[float, float, float, float]: ...
|
||||
def _scale_regularization(self, X: Union[ndarray, csr_matrix]) -> Tuple[float, float, float, float]: ...
|
||||
def fit_transform(
|
||||
self,
|
||||
X: NDArray | ArrayLike,
|
||||
|
@ -197,9 +187,7 @@ class NMF(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
|||
H: Optional[ndarray] = None,
|
||||
update_H: bool = True,
|
||||
) -> Tuple[ndarray, ndarray, int]: ...
|
||||
def fit(
|
||||
self, X: NDArray | ArrayLike, y: None = None, **params
|
||||
) -> Union[NMF, MiniBatchNMF]: ...
|
||||
def fit(self, X: NDArray | ArrayLike, y: None = None, **params) -> Union[NMF, MiniBatchNMF]: ...
|
||||
def transform(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
def inverse_transform(self, W: NDArray) -> NDArray: ...
|
||||
@property
|
||||
|
@ -210,11 +198,9 @@ class MiniBatchNMF(NMF):
|
|||
self,
|
||||
n_components: int | None = None,
|
||||
*,
|
||||
init: Literal["random", "nndsvd", "nndsvda", "nndsvdar", "custom"]
|
||||
| None = None,
|
||||
init: Literal["random", "nndsvd", "nndsvda", "nndsvdar", "custom"] | None = None,
|
||||
batch_size: int = 1024,
|
||||
beta_loss: float
|
||||
| Literal["frobenius", "kullback-leibler", "itakura-saito"] = "frobenius",
|
||||
beta_loss: float | Literal["frobenius", "kullback-leibler", "itakura-saito"] = "frobenius",
|
||||
tol: float = 1e-4,
|
||||
max_no_improvement: int = 10,
|
||||
max_iter: int = 200,
|
||||
|
@ -230,9 +216,7 @@ class MiniBatchNMF(NMF):
|
|||
) -> None: ...
|
||||
def _check_params(self, X: csr_matrix) -> "MiniBatchNMF": ...
|
||||
def _solve_W(self, X, H, max_iter): ...
|
||||
def _minibatch_step(
|
||||
self, X: csr_matrix, W: ndarray, H: ndarray, update_H: bool
|
||||
) -> float64: ...
|
||||
def _minibatch_step(self, X: csr_matrix, W: ndarray, H: ndarray, update_H: bool) -> float64: ...
|
||||
def _minibatch_convergence(
|
||||
self,
|
||||
X: csr_matrix,
|
||||
|
|
|
@ -48,12 +48,8 @@ class PCA(_BasePCA):
|
|||
def fit(self, X: ArrayLike, y: Optional[ndarray] = None) -> "PCA": ...
|
||||
def fit_transform(self, X: ArrayLike, y: Optional[ndarray] = None) -> NDArray: ...
|
||||
def _fit(self, X: ndarray) -> Tuple[ndarray, ndarray, ndarray]: ...
|
||||
def _fit_full(
|
||||
self, X: ndarray, n_components: Union[int64, str, int]
|
||||
) -> Tuple[ndarray, ndarray, ndarray]: ...
|
||||
def _fit_truncated(
|
||||
self, X: ndarray, n_components: int, svd_solver: str
|
||||
) -> Tuple[ndarray, ndarray, ndarray]: ...
|
||||
def _fit_full(self, X: ndarray, n_components: Union[int64, str, int]) -> Tuple[ndarray, ndarray, ndarray]: ...
|
||||
def _fit_truncated(self, X: ndarray, n_components: int, svd_solver: str) -> Tuple[ndarray, ndarray, ndarray]: ...
|
||||
def score_samples(self, X: ArrayLike) -> NDArray: ...
|
||||
def score(self, X: ArrayLike, y: None = None) -> float: ...
|
||||
def _more_tags(self) -> Dict[str, List[Union[Type[float64], Type[np.float32]]]]: ...
|
||||
|
|
|
@ -36,9 +36,7 @@ class TruncatedSVD(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstim
|
|||
tol: float = 0.0,
|
||||
) -> None: ...
|
||||
def fit(self, X: NDArray | ArrayLike, y=None) -> Any: ...
|
||||
def fit_transform(
|
||||
self, X: NDArray | ArrayLike, y: Optional[ndarray] = None
|
||||
) -> NDArray: ...
|
||||
def fit_transform(self, X: NDArray | ArrayLike, y: Optional[ndarray] = None) -> NDArray: ...
|
||||
def transform(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
def inverse_transform(self, X: ArrayLike) -> NDArray: ...
|
||||
def _more_tags(self): ...
|
||||
|
|
|
@ -75,12 +75,7 @@ class LinearDiscriminantAnalysis(
|
|||
|
||||
class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
priors: NDArray | None = None,
|
||||
reg_param: float = 0.0,
|
||||
store_covariance: bool = False,
|
||||
tol: float = 1.0e-4
|
||||
self, *, priors: NDArray | None = None, reg_param: float = 0.0, store_covariance: bool = False, tol: float = 1.0e-4
|
||||
) -> None: ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike) -> "QuadraticDiscriminantAnalysis": ...
|
||||
def _decision_function(self, X: ndarray) -> ndarray: ...
|
||||
|
|
|
@ -28,28 +28,20 @@ class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):
|
|||
def __init__(
|
||||
self,
|
||||
*,
|
||||
strategy: Literal[
|
||||
"most_frequent", "prior", "stratified", "uniform", "constant"
|
||||
] = "prior",
|
||||
strategy: Literal["most_frequent", "prior", "stratified", "uniform", "constant"] = "prior",
|
||||
random_state: int | RandomState | None = None,
|
||||
constant: int | str | ArrayLike | None = None
|
||||
constant: int | str | ArrayLike | None = None,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> "DummyClassifier": ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None) -> "DummyClassifier": ...
|
||||
def predict(self, X: ArrayLike) -> ArrayLike: ...
|
||||
def predict_proba(self, X: ArrayLike) -> NDArray | list[ArrayLike]: ...
|
||||
def predict_log_proba(self, X: ArrayLike) -> NDArray | list[ArrayLike]: ...
|
||||
def _more_tags(self): ...
|
||||
def score(
|
||||
self, X: ArrayLike | None, y: ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def score(self, X: ArrayLike | None, y: ArrayLike, sample_weight: ArrayLike | None = None) -> float: ...
|
||||
|
||||
# TODO: Remove in 1.2
|
||||
# mypy error: Decorated property not supported
|
||||
@deprecated( # type: ignore
|
||||
"`n_features_in_` is deprecated in 1.0 and will be removed in 1.2."
|
||||
)
|
||||
@deprecated("`n_features_in_` is deprecated in 1.0 and will be removed in 1.2.") # type: ignore
|
||||
@property
|
||||
def n_features_in_(self): ...
|
||||
|
||||
|
@ -59,23 +51,15 @@ class DummyRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|||
*,
|
||||
strategy: Literal["mean", "median", "quantile", "constant"] = "mean",
|
||||
constant: int | float | ArrayLike | None = None,
|
||||
quantile: float | None = None
|
||||
quantile: float | None = None,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> "DummyRegressor": ...
|
||||
def predict(
|
||||
self, X: ArrayLike, return_std: bool = False
|
||||
) -> tuple[ArrayLike, ArrayLike]: ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None) -> "DummyRegressor": ...
|
||||
def predict(self, X: ArrayLike, return_std: bool = False) -> tuple[ArrayLike, ArrayLike]: ...
|
||||
def _more_tags(self): ...
|
||||
def score(
|
||||
self, X: ArrayLike | None, y: ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def score(self, X: ArrayLike | None, y: ArrayLike, sample_weight: ArrayLike | None = None) -> float: ...
|
||||
|
||||
# TODO: Remove in 1.2
|
||||
# mypy error: Decorated property not supported
|
||||
@deprecated( # type: ignore
|
||||
"`n_features_in_` is deprecated in 1.0 and will be removed in 1.2."
|
||||
)
|
||||
@deprecated("`n_features_in_` is deprecated in 1.0 and will be removed in 1.2.") # type: ignore
|
||||
@property
|
||||
def n_features_in_(self): ...
|
||||
|
|
|
@ -30,9 +30,7 @@ __all__ = ["BaggingClassifier", "BaggingRegressor"]
|
|||
|
||||
MAX_INT = ...
|
||||
|
||||
def _generate_indices(
|
||||
random_state: RandomState, bootstrap: bool, n_population: int, n_samples: int
|
||||
) -> ndarray: ...
|
||||
def _generate_indices(random_state: RandomState, bootstrap: bool, n_population: int, n_samples: int) -> ndarray: ...
|
||||
def _generate_bagging_indices(
|
||||
random_state: int64,
|
||||
bootstrap_features: bool,
|
||||
|
@ -52,10 +50,7 @@ def _parallel_build_estimators(
|
|||
total_n_estimators: int,
|
||||
verbose: int,
|
||||
check_input: bool,
|
||||
) -> Union[
|
||||
Tuple[List[DecisionTreeRegressor], List[ndarray]],
|
||||
Tuple[List[ExtraTreeRegressor], List[ndarray]],
|
||||
]: ...
|
||||
) -> Union[Tuple[List[DecisionTreeRegressor], List[ndarray]], Tuple[List[ExtraTreeRegressor], List[ndarray]],]: ...
|
||||
def _parallel_predict_proba(estimators, estimators_features, X, n_classes): ...
|
||||
def _parallel_predict_log_proba(estimators, estimators_features, X, n_classes): ...
|
||||
def _parallel_decision_function(estimators, estimators_features, X): ...
|
||||
|
@ -70,9 +65,7 @@ class BaseBagging(BaseEnsemble, metaclass=ABCMeta):
|
|||
@abstractmethod
|
||||
def __init__(
|
||||
self,
|
||||
base_estimator: Optional[
|
||||
Union[DecisionTreeRegressor, ExtraTreeRegressor]
|
||||
] = None,
|
||||
base_estimator: Optional[Union[DecisionTreeRegressor, ExtraTreeRegressor]] = None,
|
||||
n_estimators: int = 10,
|
||||
*,
|
||||
max_samples=1.0,
|
||||
|
@ -111,8 +104,7 @@ class BaseBagging(BaseEnsemble, metaclass=ABCMeta):
|
|||
# TODO: Remove in 1.2
|
||||
# mypy error: Decorated property not supported
|
||||
@deprecated( # type: ignore
|
||||
"Attribute `n_features_` was deprecated in version 1.0 and will be "
|
||||
"removed in 1.2. Use `n_features_in_` instead."
|
||||
"Attribute `n_features_` was deprecated in version 1.0 and will be " "removed in 1.2. Use `n_features_in_` instead."
|
||||
)
|
||||
@property
|
||||
def n_features_(self): ...
|
||||
|
|
|
@ -78,7 +78,7 @@ class BaseEnsemble(MetaEstimatorMixin, BaseEstimator, metaclass=ABCMeta):
|
|||
],
|
||||
*,
|
||||
n_estimators: int = 10,
|
||||
estimator_params: ArrayLike = ...
|
||||
estimator_params: ArrayLike = ...,
|
||||
) -> None: ...
|
||||
def _validate_estimator(
|
||||
self,
|
||||
|
@ -88,23 +88,14 @@ class BaseEnsemble(MetaEstimatorMixin, BaseEstimator, metaclass=ABCMeta):
|
|||
self,
|
||||
append: bool = True,
|
||||
random_state: Optional[Union[int64, RandomState]] = None,
|
||||
) -> Union[
|
||||
DecisionTreeRegressor,
|
||||
DecisionTreeClassifier,
|
||||
ExtraTreeRegressor,
|
||||
ExtraTreeClassifier,
|
||||
]: ...
|
||||
) -> Union[DecisionTreeRegressor, DecisionTreeClassifier, ExtraTreeRegressor, ExtraTreeClassifier,]: ...
|
||||
def __len__(self) -> int: ...
|
||||
def __getitem__(self, index): ...
|
||||
def __iter__(self): ...
|
||||
|
||||
def _partition_estimators(
|
||||
n_estimators: int, n_jobs: Optional[int]
|
||||
) -> Tuple[int, List[int], List[int]]: ...
|
||||
def _partition_estimators(n_estimators: int, n_jobs: Optional[int]) -> Tuple[int, List[int], List[int]]: ...
|
||||
|
||||
class _BaseHeterogeneousEnsemble(
|
||||
MetaEstimatorMixin, _BaseComposition, metaclass=ABCMeta
|
||||
):
|
||||
class _BaseHeterogeneousEnsemble(MetaEstimatorMixin, _BaseComposition, metaclass=ABCMeta):
|
||||
|
||||
_required_parameters: list = ...
|
||||
|
||||
|
|
|
@ -64,12 +64,8 @@ __all__ = [
|
|||
MAX_INT = ...
|
||||
|
||||
def _get_n_samples_bootstrap(n_samples: int, max_samples: Optional[float]) -> int: ...
|
||||
def _generate_sample_indices(
|
||||
random_state: int, n_samples: int, n_samples_bootstrap: int
|
||||
) -> ndarray: ...
|
||||
def _generate_unsampled_indices(
|
||||
random_state: int, n_samples: int, n_samples_bootstrap: int
|
||||
) -> ndarray: ...
|
||||
def _generate_sample_indices(random_state: int, n_samples: int, n_samples_bootstrap: int) -> ndarray: ...
|
||||
def _generate_unsampled_indices(random_state: int, n_samples: int, n_samples_bootstrap: int) -> ndarray: ...
|
||||
def _parallel_build_trees(
|
||||
tree: Union[
|
||||
DecisionTreeRegressor,
|
||||
|
@ -86,12 +82,7 @@ def _parallel_build_trees(
|
|||
verbose: int = 0,
|
||||
class_weight: None = None,
|
||||
n_samples_bootstrap: Optional[int] = None,
|
||||
) -> Union[
|
||||
DecisionTreeRegressor,
|
||||
DecisionTreeClassifier,
|
||||
ExtraTreeRegressor,
|
||||
ExtraTreeClassifier,
|
||||
]: ...
|
||||
) -> Union[DecisionTreeRegressor, DecisionTreeClassifier, ExtraTreeRegressor, ExtraTreeClassifier,]: ...
|
||||
|
||||
class BaseForest(MultiOutputMixin, BaseEnsemble, metaclass=ABCMeta):
|
||||
@abstractmethod
|
||||
|
@ -133,17 +124,14 @@ class BaseForest(MultiOutputMixin, BaseEnsemble, metaclass=ABCMeta):
|
|||
def _set_oob_score_and_attributes(self, X, y): ...
|
||||
def _compute_oob_predictions(self, X: ndarray, y: ndarray) -> ndarray: ...
|
||||
def _validate_y_class_weight(self, y: ndarray) -> Tuple[ndarray, None]: ...
|
||||
def _validate_X_predict(
|
||||
self, X: Union[ndarray, csr_matrix]
|
||||
) -> Union[ndarray, csr_matrix]: ...
|
||||
def _validate_X_predict(self, X: Union[ndarray, csr_matrix]) -> Union[ndarray, csr_matrix]: ...
|
||||
@property
|
||||
def feature_importances_(self) -> NDArray: ...
|
||||
|
||||
# TODO: Remove in 1.2
|
||||
# mypy error: Decorated property not supported
|
||||
@deprecated( # type: ignore
|
||||
"Attribute `n_features_` was deprecated in version 1.0 and will be "
|
||||
"removed in 1.2. Use `n_features_in_` instead."
|
||||
"Attribute `n_features_` was deprecated in version 1.0 and will be " "removed in 1.2. Use `n_features_in_` instead."
|
||||
)
|
||||
@property
|
||||
def n_features_(self): ...
|
||||
|
@ -173,9 +161,7 @@ class ForestClassifier(ClassifierMixin, BaseForest, metaclass=ABCMeta):
|
|||
def _validate_y_class_weight(self, y: ndarray) -> Tuple[ndarray, None]: ...
|
||||
def predict(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
def predict_proba(self, X: NDArray | ArrayLike) -> NDArray | list[ArrayLike]: ...
|
||||
def predict_log_proba(
|
||||
self, X: NDArray | ArrayLike
|
||||
) -> NDArray | list[ArrayLike]: ...
|
||||
def predict_log_proba(self, X: NDArray | ArrayLike) -> NDArray | list[ArrayLike]: ...
|
||||
def _more_tags(self) -> Dict[str, bool]: ...
|
||||
|
||||
class ForestRegressor(RegressorMixin, BaseForest, metaclass=ABCMeta):
|
||||
|
@ -220,10 +206,7 @@ class RandomForestClassifier(ForestClassifier):
|
|||
random_state: int | RandomState | None = None,
|
||||
verbose: int = 0,
|
||||
warm_start: bool = False,
|
||||
class_weight: Literal["balanced", "balanced_subsample"]
|
||||
| dict
|
||||
| Sequence[dict]
|
||||
| None = None,
|
||||
class_weight: Literal["balanced", "balanced_subsample"] | dict | Sequence[dict] | None = None,
|
||||
ccp_alpha: float = 0.0,
|
||||
max_samples: int | float | None = None,
|
||||
) -> None: ...
|
||||
|
@ -233,9 +216,7 @@ class RandomForestRegressor(ForestRegressor):
|
|||
self,
|
||||
n_estimators: int = 100,
|
||||
*,
|
||||
criterion: Literal[
|
||||
"squared_error", "absolute_error", "poisson"
|
||||
] = "squared_error",
|
||||
criterion: Literal["squared_error", "absolute_error", "poisson"] = "squared_error",
|
||||
max_depth: int | None = None,
|
||||
min_samples_split: int | float = 2,
|
||||
min_samples_leaf: int | float = 1,
|
||||
|
@ -272,10 +253,7 @@ class ExtraTreesClassifier(ForestClassifier):
|
|||
random_state: int | RandomState | None = None,
|
||||
verbose: int = 0,
|
||||
warm_start: bool = False,
|
||||
class_weight: Literal["balanced", "balanced_subsample"]
|
||||
| dict
|
||||
| Sequence[dict]
|
||||
| None = None,
|
||||
class_weight: Literal["balanced", "balanced_subsample"] | dict | Sequence[dict] | None = None,
|
||||
ccp_alpha: float = 0.0,
|
||||
max_samples: int | float | None = None,
|
||||
) -> None: ...
|
||||
|
@ -325,16 +303,12 @@ class RandomTreesEmbedding(TransformerMixin, BaseForest):
|
|||
warm_start: bool = False,
|
||||
) -> None: ...
|
||||
def _set_oob_score_and_attributes(self, X, y): ...
|
||||
def fit(
|
||||
self, X: NDArray | ArrayLike, y=None, sample_weight: ArrayLike | None = None
|
||||
) -> Any: ...
|
||||
def fit(self, X: NDArray | ArrayLike, y=None, sample_weight: ArrayLike | None = None) -> Any: ...
|
||||
def fit_transform(
|
||||
self,
|
||||
X: NDArray | ArrayLike,
|
||||
y: Optional[ndarray] = None,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
) -> NDArray: ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
def transform(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
|
|
|
@ -113,9 +113,7 @@ class BaseGradientBoosting(BaseEnsemble, metaclass=ABCMeta):
|
|||
def _make_estimator(self, append=True): ...
|
||||
def _raw_predict_init(self, X: ndarray) -> ndarray: ...
|
||||
def _raw_predict(self, X: ndarray) -> ndarray: ...
|
||||
def _staged_raw_predict(
|
||||
self, X: ndarray, check_input: bool = True
|
||||
) -> Iterator[ndarray]: ...
|
||||
def _staged_raw_predict(self, X: ndarray, check_input: bool = True) -> Iterator[ndarray]: ...
|
||||
@property
|
||||
def feature_importances_(self) -> NDArray: ...
|
||||
def _compute_partial_dependence_recursion(self, grid, target_features): ...
|
||||
|
@ -124,17 +122,14 @@ class BaseGradientBoosting(BaseEnsemble, metaclass=ABCMeta):
|
|||
# TODO(1.2): Remove
|
||||
# mypy error: Decorated property not supported
|
||||
@deprecated( # type: ignore
|
||||
"Attribute `n_features_` was deprecated in version 1.0 and will be "
|
||||
"removed in 1.2. Use `n_features_in_` instead."
|
||||
"Attribute `n_features_` was deprecated in version 1.0 and will be " "removed in 1.2. Use `n_features_in_` instead."
|
||||
)
|
||||
@property
|
||||
def n_features_(self): ...
|
||||
|
||||
# TODO(1.3): Remove
|
||||
# mypy error: Decorated property not supported
|
||||
@deprecated( # type: ignore
|
||||
"Attribute `loss_` was deprecated in version 1.1 and will be removed in 1.3."
|
||||
)
|
||||
@deprecated("Attribute `loss_` was deprecated in version 1.1 and will be removed in 1.3.") # type: ignore
|
||||
@property
|
||||
def loss_(self): ...
|
||||
|
||||
|
@ -184,9 +179,7 @@ class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting):
|
|||
def __init__(
|
||||
self,
|
||||
*,
|
||||
loss: Literal[
|
||||
"squared_error", "absolute_error", "huber", "quantile"
|
||||
] = "squared_error",
|
||||
loss: Literal["squared_error", "absolute_error", "huber", "quantile"] = "squared_error",
|
||||
learning_rate: float = 0.1,
|
||||
n_estimators: int = 100,
|
||||
subsample: float = 1.0,
|
||||
|
|
|
@ -21,9 +21,7 @@ class LossFunction(metaclass=ABCMeta):
|
|||
def __init__(self, n_classes: int) -> None: ...
|
||||
def init_estimator(self): ...
|
||||
@abstractmethod
|
||||
def __call__(
|
||||
self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None
|
||||
): ...
|
||||
def __call__(self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None): ...
|
||||
@abstractmethod
|
||||
def negative_gradient(self, y: NDArray, raw_predictions: NDArray, **kargs): ...
|
||||
def update_terminal_regions(
|
||||
|
@ -56,18 +54,12 @@ class LossFunction(metaclass=ABCMeta):
|
|||
class RegressionLossFunction(LossFunction, metaclass=ABCMeta):
|
||||
def __init__(self) -> None: ...
|
||||
def check_init_estimator(self, estimator: Any): ...
|
||||
def get_init_raw_predictions(
|
||||
self, X: NDArray, estimator: DummyRegressor
|
||||
) -> NDArray: ...
|
||||
def get_init_raw_predictions(self, X: NDArray, estimator: DummyRegressor) -> NDArray: ...
|
||||
|
||||
class LeastSquaresError(RegressionLossFunction):
|
||||
def init_estimator(self) -> DummyRegressor: ...
|
||||
def __call__(
|
||||
self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None
|
||||
) -> float64: ...
|
||||
def negative_gradient(
|
||||
self, y: NDArray, raw_predictions: NDArray, **kargs
|
||||
) -> ndarray: ...
|
||||
def __call__(self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None) -> float64: ...
|
||||
def negative_gradient(self, y: NDArray, raw_predictions: NDArray, **kargs) -> ndarray: ...
|
||||
def update_terminal_regions(
|
||||
self,
|
||||
tree: Tree,
|
||||
|
@ -94,9 +86,7 @@ class LeastSquaresError(RegressionLossFunction):
|
|||
|
||||
class LeastAbsoluteError(RegressionLossFunction):
|
||||
def init_estimator(self): ...
|
||||
def __call__(
|
||||
self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None
|
||||
): ...
|
||||
def __call__(self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None): ...
|
||||
def negative_gradient(self, y: NDArray, raw_predictions: NDArray, **kargs): ...
|
||||
def _update_terminal_region(
|
||||
self,
|
||||
|
@ -113,16 +103,8 @@ class LeastAbsoluteError(RegressionLossFunction):
|
|||
class HuberLossFunction(RegressionLossFunction):
|
||||
def __init__(self, alpha: float = 0.9): ...
|
||||
def init_estimator(self): ...
|
||||
def __call__(
|
||||
self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None
|
||||
): ...
|
||||
def negative_gradient(
|
||||
self,
|
||||
y: NDArray,
|
||||
raw_predictions: NDArray,
|
||||
sample_weight: NDArray | None = None,
|
||||
**kargs
|
||||
): ...
|
||||
def __call__(self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None): ...
|
||||
def negative_gradient(self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None, **kargs): ...
|
||||
def _update_terminal_region(
|
||||
self,
|
||||
tree,
|
||||
|
@ -138,12 +120,8 @@ class HuberLossFunction(RegressionLossFunction):
|
|||
class QuantileLossFunction(RegressionLossFunction):
|
||||
def __init__(self, alpha: float = 0.9) -> None: ...
|
||||
def init_estimator(self) -> DummyRegressor: ...
|
||||
def __call__(
|
||||
self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None
|
||||
) -> float64: ...
|
||||
def negative_gradient(
|
||||
self, y: NDArray, raw_predictions: NDArray, **kargs
|
||||
) -> ndarray: ...
|
||||
def __call__(self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None) -> float64: ...
|
||||
def negative_gradient(self, y: NDArray, raw_predictions: NDArray, **kargs) -> ndarray: ...
|
||||
def _update_terminal_region(
|
||||
self,
|
||||
tree: Tree,
|
||||
|
@ -165,12 +143,8 @@ class ClassificationLossFunction(LossFunction, metaclass=ABCMeta):
|
|||
class BinomialDeviance(ClassificationLossFunction):
|
||||
def __init__(self, n_classes: int) -> None: ...
|
||||
def init_estimator(self) -> DummyClassifier: ...
|
||||
def __call__(
|
||||
self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None
|
||||
) -> float64: ...
|
||||
def negative_gradient(
|
||||
self, y: NDArray, raw_predictions: NDArray, **kargs
|
||||
) -> ndarray: ...
|
||||
def __call__(self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None) -> float64: ...
|
||||
def negative_gradient(self, y: NDArray, raw_predictions: NDArray, **kargs) -> ndarray: ...
|
||||
def _update_terminal_region(
|
||||
self,
|
||||
tree: Tree,
|
||||
|
@ -184,9 +158,7 @@ class BinomialDeviance(ClassificationLossFunction):
|
|||
) -> None: ...
|
||||
def _raw_prediction_to_proba(self, raw_predictions: ndarray) -> ndarray: ...
|
||||
def _raw_prediction_to_decision(self, raw_predictions: ndarray) -> ndarray: ...
|
||||
def get_init_raw_predictions(
|
||||
self, X: NDArray, estimator: DummyClassifier
|
||||
) -> NDArray: ...
|
||||
def get_init_raw_predictions(self, X: NDArray, estimator: DummyClassifier) -> NDArray: ...
|
||||
|
||||
class MultinomialDeviance(ClassificationLossFunction):
|
||||
|
||||
|
@ -194,12 +166,8 @@ class MultinomialDeviance(ClassificationLossFunction):
|
|||
|
||||
def __init__(self, n_classes: int) -> None: ...
|
||||
def init_estimator(self) -> DummyClassifier: ...
|
||||
def __call__(
|
||||
self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None
|
||||
) -> float64: ...
|
||||
def negative_gradient(
|
||||
self, y: NDArray, raw_predictions: NDArray, k: int = 0, **kwargs
|
||||
) -> ndarray: ...
|
||||
def __call__(self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None) -> float64: ...
|
||||
def negative_gradient(self, y: NDArray, raw_predictions: NDArray, k: int = 0, **kwargs) -> ndarray: ...
|
||||
def _update_terminal_region(
|
||||
self,
|
||||
tree: Tree,
|
||||
|
@ -213,16 +181,12 @@ class MultinomialDeviance(ClassificationLossFunction):
|
|||
) -> None: ...
|
||||
def _raw_prediction_to_proba(self, raw_predictions: ndarray) -> ndarray: ...
|
||||
def _raw_prediction_to_decision(self, raw_predictions: ndarray) -> ndarray: ...
|
||||
def get_init_raw_predictions(
|
||||
self, X: NDArray, estimator: DummyClassifier
|
||||
) -> NDArray: ...
|
||||
def get_init_raw_predictions(self, X: NDArray, estimator: DummyClassifier) -> NDArray: ...
|
||||
|
||||
class ExponentialLoss(ClassificationLossFunction):
|
||||
def __init__(self, n_classes: int): ...
|
||||
def init_estimator(self): ...
|
||||
def __call__(
|
||||
self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None
|
||||
): ...
|
||||
def __call__(self, y: NDArray, raw_predictions: NDArray, sample_weight: NDArray | None = None): ...
|
||||
def negative_gradient(self, y: NDArray, raw_predictions: NDArray, **kargs): ...
|
||||
def _update_terminal_region(
|
||||
self,
|
||||
|
|
|
@ -11,7 +11,6 @@ from ...utils import check_random_state, check_array
|
|||
from ...base import BaseEstimator, TransformerMixin
|
||||
from ...utils.validation import check_is_fitted
|
||||
|
||||
|
||||
def _find_binning_thresholds(col_data: ndarray, max_bins: int) -> ndarray: ...
|
||||
|
||||
class _BinMapper(TransformerMixin, BaseEstimator):
|
||||
|
|
|
@ -34,7 +34,6 @@ from ...metrics import check_scoring
|
|||
from ...model_selection import train_test_split
|
||||
from ...preprocessing import LabelEncoder
|
||||
|
||||
|
||||
from .binning import _BinMapper
|
||||
from .grower import TreeGrower
|
||||
from pandas.core.frame import DataFrame
|
||||
|
@ -88,9 +87,7 @@ class BaseHistGradientBoosting(BaseEstimator, ABC):
|
|||
) -> Union[HistGradientBoostingRegressor, HistGradientBoostingClassifier]: ...
|
||||
def _is_fitted(self) -> bool: ...
|
||||
def _clear_state(self) -> None: ...
|
||||
def _get_small_trainset(
|
||||
self, X_binned_train, y_train, sample_weight_train, seed
|
||||
): ...
|
||||
def _get_small_trainset(self, X_binned_train, y_train, sample_weight_train, seed): ...
|
||||
def _check_early_stopping_scorer(
|
||||
self,
|
||||
X_binned_small_train,
|
||||
|
@ -123,9 +120,7 @@ class BaseHistGradientBoosting(BaseEstimator, ABC):
|
|||
n_threads: int,
|
||||
) -> None: ...
|
||||
def _staged_raw_predict(self, X): ...
|
||||
def _compute_partial_dependence_recursion(
|
||||
self, grid: ndarray, target_features: ndarray
|
||||
) -> ndarray: ...
|
||||
def _compute_partial_dependence_recursion(self, grid: ndarray, target_features: ndarray) -> ndarray: ...
|
||||
def _more_tags(self): ...
|
||||
@abstractmethod
|
||||
def _get_loss(self, sample_weight): ...
|
||||
|
@ -141,9 +136,7 @@ class HistGradientBoostingRegressor(RegressorMixin, BaseHistGradientBoosting):
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
loss: Literal[
|
||||
"squared_error", "absolute_error", "poisson", "quantile"
|
||||
] = "squared_error",
|
||||
loss: Literal["squared_error", "absolute_error", "poisson", "quantile"] = "squared_error",
|
||||
*,
|
||||
quantile: float | None = None,
|
||||
learning_rate: float = 0.1,
|
||||
|
@ -167,9 +160,7 @@ class HistGradientBoostingRegressor(RegressorMixin, BaseHistGradientBoosting):
|
|||
def predict(self, X: ArrayLike) -> NDArray: ...
|
||||
def staged_predict(self, X: ArrayLike): ...
|
||||
def _encode_y(self, y: ndarray) -> ndarray: ...
|
||||
def _get_loss(
|
||||
self, sample_weight: None
|
||||
) -> Union[HalfPoissonLoss, PinballLoss, HalfSquaredError]: ...
|
||||
def _get_loss(self, sample_weight: None) -> Union[HalfPoissonLoss, PinballLoss, HalfSquaredError]: ...
|
||||
|
||||
class HistGradientBoostingClassifier(ClassifierMixin, BaseHistGradientBoosting):
|
||||
|
||||
|
@ -178,9 +169,7 @@ class HistGradientBoostingClassifier(ClassifierMixin, BaseHistGradientBoosting):
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
loss: Literal[
|
||||
"log_loss", "auto", "binary_crossentropy", "categorical_crossentropy"
|
||||
] = "log_loss",
|
||||
loss: Literal["log_loss", "auto", "binary_crossentropy", "categorical_crossentropy"] = "log_loss",
|
||||
*,
|
||||
learning_rate: float = 0.1,
|
||||
max_iter: int = 100,
|
||||
|
|
|
@ -75,9 +75,7 @@ class TreeGrower:
|
|||
) -> None: ...
|
||||
def grow(self) -> None: ...
|
||||
def _apply_shrinkage(self) -> None: ...
|
||||
def _intilialize_root(
|
||||
self, gradients: ndarray, hessians: ndarray, hessians_are_constant: bool
|
||||
) -> None: ...
|
||||
def _intilialize_root(self, gradients: ndarray, hessians: ndarray, hessians_are_constant: bool) -> None: ...
|
||||
def _compute_best_split_and_push(self, node: TreeNode) -> None: ...
|
||||
def split_next(self) -> tuple[TreeNode, TreeNode]: ...
|
||||
def _finalize_leaf(self, node: TreeNode) -> None: ...
|
||||
|
|
|
@ -14,12 +14,6 @@ class TreePredictor:
|
|||
) -> None: ...
|
||||
def get_n_leaf_nodes(self): ...
|
||||
def get_max_depth(self): ...
|
||||
def predict(
|
||||
self, X: NDArray, known_cat_bitsets: NDArray, f_idx_map: NDArray, n_threads: int
|
||||
) -> NDArray: ...
|
||||
def predict_binned(
|
||||
self, X: NDArray, missing_values_bin_idx: int, n_threads: int
|
||||
) -> NDArray: ...
|
||||
def compute_partial_dependence(
|
||||
self, grid: NDArray, target_features: NDArray, out: NDArray
|
||||
) -> None: ...
|
||||
def predict(self, X: NDArray, known_cat_bitsets: NDArray, f_idx_map: NDArray, n_threads: int) -> NDArray: ...
|
||||
def predict_binned(self, X: NDArray, missing_values_bin_idx: int, n_threads: int) -> NDArray: ...
|
||||
def compute_partial_dependence(self, grid: NDArray, target_features: NDArray, out: NDArray) -> None: ...
|
||||
|
|
|
@ -52,9 +52,7 @@ class IsolationForest(OutlierMixin, BaseBagging):
|
|||
def decision_function(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
def score_samples(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
def _compute_chunked_score_samples(self, X: ndarray) -> ndarray: ...
|
||||
def _compute_score_samples(
|
||||
self, X: ndarray, subsample_features: bool
|
||||
) -> ndarray: ...
|
||||
def _compute_score_samples(self, X: ndarray, subsample_features: bool) -> ndarray: ...
|
||||
def _more_tags(self): ...
|
||||
|
||||
def _average_path_length(n_samples_leaf: Union[List[int], ndarray]) -> ndarray: ...
|
||||
|
|
|
@ -47,9 +47,7 @@ class _BaseStacking(TransformerMixin, _BaseHeterogeneousEnsemble, metaclass=ABCM
|
|||
@abstractmethod
|
||||
def __init__(
|
||||
self,
|
||||
estimators: List[
|
||||
Union[Tuple[str, RandomForestClassifier], Tuple[str, Pipeline]]
|
||||
],
|
||||
estimators: List[Union[Tuple[str, RandomForestClassifier], Tuple[str, Pipeline]]],
|
||||
final_estimator: Optional[LogisticRegression] = None,
|
||||
*,
|
||||
cv=None,
|
||||
|
@ -59,13 +57,9 @@ class _BaseStacking(TransformerMixin, _BaseHeterogeneousEnsemble, metaclass=ABCM
|
|||
passthrough=False,
|
||||
) -> None: ...
|
||||
def _clone_final_estimator(self, default: LogisticRegression) -> None: ...
|
||||
def _concatenate_predictions(
|
||||
self, X: ndarray, predictions: List[ndarray]
|
||||
) -> ndarray: ...
|
||||
def _concatenate_predictions(self, X: ndarray, predictions: List[ndarray]) -> ndarray: ...
|
||||
@staticmethod
|
||||
def _method_name(
|
||||
name: str, estimator: Union[Pipeline, RandomForestClassifier], method: str
|
||||
) -> str: ...
|
||||
def _method_name(name: str, estimator: Union[Pipeline, RandomForestClassifier], method: str) -> str: ...
|
||||
def fit(
|
||||
self,
|
||||
X: NDArray | ArrayLike,
|
||||
|
@ -75,9 +69,7 @@ class _BaseStacking(TransformerMixin, _BaseHeterogeneousEnsemble, metaclass=ABCM
|
|||
@property
|
||||
def n_features_in_(self): ...
|
||||
def _transform(self, X: ndarray) -> ndarray: ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
@available_if(_estimator_has("predict"))
|
||||
def predict(self, X: NDArray | ArrayLike, **predict_params) -> np.ndarray: ...
|
||||
def _sk_visual_block_(self, final_estimator): ...
|
||||
|
@ -89,9 +81,7 @@ class StackingClassifier(ClassifierMixin, _BaseStacking):
|
|||
final_estimator: BaseEstimator | None = None,
|
||||
*,
|
||||
cv: int | Generator | Iterable | Literal["prefit"] | None = None,
|
||||
stack_method: Literal[
|
||||
"auto", "predict_proba", "decision_function", "predict"
|
||||
] = "auto",
|
||||
stack_method: Literal["auto", "predict_proba", "decision_function", "predict"] = "auto",
|
||||
n_jobs: int | None = None,
|
||||
passthrough: bool = False,
|
||||
verbose: int = 0,
|
||||
|
|
|
@ -41,12 +41,8 @@ class _BaseVoting(TransformerMixin, _BaseHeterogeneousEnsemble):
|
|||
def _weights_not_none(self) -> Optional[List[int]]: ...
|
||||
def _predict(self, X: ndarray) -> ndarray: ...
|
||||
@abstractmethod
|
||||
def fit(
|
||||
self, X: ndarray, y: ndarray, sample_weight: None = None
|
||||
) -> Union[VotingRegressor, VotingClassifier]: ...
|
||||
def fit_transform(
|
||||
self, X: ArrayLike, y: NDArray | None = None, **fit_params
|
||||
) -> NDArray: ...
|
||||
def fit(self, X: ndarray, y: ndarray, sample_weight: None = None) -> Union[VotingRegressor, VotingClassifier]: ...
|
||||
def fit_transform(self, X: ArrayLike, y: NDArray | None = None, **fit_params) -> NDArray: ...
|
||||
@property
|
||||
def n_features_in_(self): ...
|
||||
def _sk_visual_block_(self): ...
|
||||
|
@ -75,9 +71,7 @@ class VotingClassifier(ClassifierMixin, _BaseVoting):
|
|||
@available_if(_check_voting)
|
||||
def predict_proba(self, X: NDArray | ArrayLike) -> ArrayLike: ...
|
||||
def transform(self, X: NDArray | ArrayLike): ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
|
||||
class VotingRegressor(RegressorMixin, _BaseVoting):
|
||||
def __init__(
|
||||
|
@ -96,6 +90,4 @@ class VotingRegressor(RegressorMixin, _BaseVoting):
|
|||
) -> "VotingRegressor": ...
|
||||
def predict(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
def transform(self, X: NDArray | ArrayLike) -> np.ndarray: ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
|
|
|
@ -43,9 +43,7 @@ class BaseWeightBoosting(BaseEnsemble, metaclass=ABCMeta):
|
|||
@abstractmethod
|
||||
def __init__(
|
||||
self,
|
||||
base_estimator: Optional[
|
||||
Union[DecisionTreeRegressor, DecisionTreeClassifier]
|
||||
] = None,
|
||||
base_estimator: Optional[Union[DecisionTreeRegressor, DecisionTreeClassifier]] = None,
|
||||
*,
|
||||
n_estimators=50,
|
||||
estimator_params=...,
|
||||
|
@ -70,9 +68,7 @@ class BaseWeightBoosting(BaseEnsemble, metaclass=ABCMeta):
|
|||
@property
|
||||
def feature_importances_(self) -> NDArray: ...
|
||||
|
||||
def _samme_proba(
|
||||
estimator: DecisionTreeClassifier, n_classes: int, X: ndarray
|
||||
) -> ndarray: ...
|
||||
def _samme_proba(estimator: DecisionTreeClassifier, n_classes: int, X: ndarray) -> ndarray: ...
|
||||
|
||||
class AdaBoostClassifier(ClassifierMixin, BaseWeightBoosting):
|
||||
def __init__(
|
||||
|
|
|
@ -40,6 +40,4 @@ from numpy.distutils import log
|
|||
|
||||
def is_sequence(seq): ...
|
||||
def forward_bytes_to_stdout(val): ...
|
||||
def CCompiler_spawn(
|
||||
self, cmd: str, display: str | Sequence[str] | None = None, env: dict | None = None
|
||||
) -> None: ...
|
||||
def CCompiler_spawn(self, cmd: str, display: str | Sequence[str] | None = None, env: dict | None = None) -> None: ...
|
||||
|
|
|
@ -136,9 +136,7 @@ class Version(_BaseVersion):
|
|||
@property
|
||||
def micro(self) -> int: ...
|
||||
|
||||
def _parse_letter_version(
|
||||
letter: str, number: Union[str, bytes, SupportsInt]
|
||||
) -> Optional[Tuple[str, int]]: ...
|
||||
def _parse_letter_version(letter: str, number: Union[str, bytes, SupportsInt]) -> Optional[Tuple[str, int]]: ...
|
||||
|
||||
_local_version_separators = ...
|
||||
|
||||
|
|
|
@ -44,20 +44,11 @@ class DictVectorizer(TransformerMixin, BaseEstimator):
|
|||
): ...
|
||||
def fit(self, X: Mapping | Iterable[Mapping], y=None) -> Any: ...
|
||||
def _transform(self, X: List[Dict[str, int]], fitting: bool) -> csr_matrix: ...
|
||||
def fit_transform(
|
||||
self, X: Mapping | Iterable[Mapping], y: Optional[ndarray] = None
|
||||
) -> NDArray: ...
|
||||
def inverse_transform(
|
||||
self, X: NDArray | ArrayLike, dict_type: type = ...
|
||||
) -> list[Mapping]: ...
|
||||
def fit_transform(self, X: Mapping | Iterable[Mapping], y: Optional[ndarray] = None) -> NDArray: ...
|
||||
def inverse_transform(self, X: NDArray | ArrayLike, dict_type: type = ...) -> list[Mapping]: ...
|
||||
def transform(self, X: Mapping | Iterable[Mapping]) -> NDArray: ...
|
||||
@deprecated(
|
||||
"get_feature_names is deprecated in 1.0 and will be removed "
|
||||
"in 1.2. Please use get_feature_names_out instead."
|
||||
)
|
||||
@deprecated("get_feature_names is deprecated in 1.0 and will be removed " "in 1.2. Please use get_feature_names_out instead.")
|
||||
def get_feature_names(self) -> list: ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
def restrict(self, support: ArrayLike, indices: bool = False) -> Any: ...
|
||||
def _more_tags(self): ...
|
||||
|
|
|
@ -2,7 +2,6 @@ from numpy import ndarray
|
|||
from typing import Optional, Tuple, Type, Any
|
||||
from numpy.typing import NDArray, ArrayLike, DTypeLike
|
||||
|
||||
|
||||
# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
|
||||
# Gael Varoquaux <gael.varoquaux@normalesup.org>
|
||||
# Olivier Grisel
|
||||
|
@ -36,9 +35,7 @@ def _compute_gradient_3d(edges: ndarray, img: ndarray) -> ndarray: ...
|
|||
|
||||
# XXX: Why mask the image after computing the weights?
|
||||
|
||||
def _mask_edges_weights(
|
||||
mask: ndarray, edges: ndarray, weights: Optional[ndarray] = None
|
||||
) -> Tuple[ndarray, ndarray]: ...
|
||||
def _mask_edges_weights(mask: ndarray, edges: ndarray, weights: Optional[ndarray] = None) -> Tuple[ndarray, ndarray]: ...
|
||||
def _to_graph(
|
||||
n_x: int,
|
||||
n_y: int,
|
||||
|
@ -49,41 +46,25 @@ def _to_graph(
|
|||
dtype: Optional[Type[int]] = None,
|
||||
) -> coo_matrix: ...
|
||||
def img_to_graph(
|
||||
img: NDArray,
|
||||
*,
|
||||
mask: NDArray | None = None,
|
||||
return_as: NDArray = ...,
|
||||
dtype: DTypeLike | None = None
|
||||
img: NDArray, *, mask: NDArray | None = None, return_as: NDArray = ..., dtype: DTypeLike | None = None
|
||||
) -> NDArray: ...
|
||||
def grid_to_graph(
|
||||
n_x: int,
|
||||
n_y: int,
|
||||
n_z: int = 1,
|
||||
*,
|
||||
mask: NDArray | None = None,
|
||||
return_as: NDArray = ...,
|
||||
dtype: DTypeLike = ...
|
||||
n_x: int, n_y: int, n_z: int = 1, *, mask: NDArray | None = None, return_as: NDArray = ..., dtype: DTypeLike = ...
|
||||
) -> NDArray: ...
|
||||
|
||||
###############################################################################
|
||||
# From an image to a set of small image patches
|
||||
|
||||
def _compute_n_patches(
|
||||
i_h: int, i_w: int, p_h: int, p_w: int, max_patches: Optional[int] = None
|
||||
) -> int: ...
|
||||
def _extract_patches(
|
||||
arr: ndarray, patch_shape: Tuple[int, int, int] = ..., extraction_step: int = 1
|
||||
) -> ndarray: ...
|
||||
def _compute_n_patches(i_h: int, i_w: int, p_h: int, p_w: int, max_patches: Optional[int] = None) -> int: ...
|
||||
def _extract_patches(arr: ndarray, patch_shape: Tuple[int, int, int] = ..., extraction_step: int = 1) -> ndarray: ...
|
||||
def extract_patches_2d(
|
||||
image: NDArray,
|
||||
patch_size: tuple[int, int],
|
||||
*,
|
||||
max_patches: int | float | None = None,
|
||||
random_state: int | RandomState | None = None
|
||||
) -> NDArray: ...
|
||||
def reconstruct_from_patches_2d(
|
||||
patches: NDArray, image_size: tuple[int, int] | tuple[int, int, int]
|
||||
random_state: int | RandomState | None = None,
|
||||
) -> NDArray: ...
|
||||
def reconstruct_from_patches_2d(patches: NDArray, image_size: tuple[int, int] | tuple[int, int, int]) -> NDArray: ...
|
||||
|
||||
class PatchExtractor(BaseEstimator):
|
||||
def __init__(
|
||||
|
@ -91,7 +72,7 @@ class PatchExtractor(BaseEstimator):
|
|||
*,
|
||||
patch_size: tuple[int, int] | None = None,
|
||||
max_patches: int | float | None = None,
|
||||
random_state: int | RandomState | None = None
|
||||
random_state: int | RandomState | None = None,
|
||||
): ...
|
||||
def fit(self, X: ArrayLike, y=None) -> Any: ...
|
||||
def transform(self, X: NDArray) -> NDArray: ...
|
||||
|
|
|
@ -78,9 +78,7 @@ class _VectorizerMixin:
|
|||
_white_spaces = ...
|
||||
|
||||
def decode(self, doc: bytes | str) -> str: ...
|
||||
def _word_ngrams(
|
||||
self, tokens: List[Union[str, Any]], stop_words: Optional[frozenset] = None
|
||||
) -> List[Union[str, Any]]: ...
|
||||
def _word_ngrams(self, tokens: List[Union[str, Any]], stop_words: Optional[frozenset] = None) -> List[Union[str, Any]]: ...
|
||||
def _char_ngrams(self, text_document): ...
|
||||
def _char_wb_ngrams(self, text_document): ...
|
||||
def build_preprocessor(self) -> Callable: ...
|
||||
|
@ -147,9 +145,7 @@ class CountVectorizer(_VectorizerMixin, BaseEstimator):
|
|||
binary: bool = False,
|
||||
dtype: type = ...,
|
||||
) -> None: ...
|
||||
def _sort_features(
|
||||
self, X: csr_matrix, vocabulary: Dict[str, Union[int, int64]]
|
||||
) -> csr_matrix: ...
|
||||
def _sort_features(self, X: csr_matrix, vocabulary: Dict[str, Union[int, int64]]) -> csr_matrix: ...
|
||||
def _limit_features(
|
||||
self,
|
||||
X: csr_matrix,
|
||||
|
@ -158,24 +154,15 @@ class CountVectorizer(_VectorizerMixin, BaseEstimator):
|
|||
low: Optional[int] = None,
|
||||
limit: Optional[int] = None,
|
||||
) -> Union[Tuple[csr_matrix, Set[str]], Tuple[csr_matrix, Set[Any]]]: ...
|
||||
def _count_vocab(
|
||||
self, raw_documents: Union[ndarray, List[str]], fixed_vocab: bool
|
||||
) -> Tuple[Dict[str, int], csr_matrix]: ...
|
||||
def _count_vocab(self, raw_documents: Union[ndarray, List[str]], fixed_vocab: bool) -> Tuple[Dict[str, int], csr_matrix]: ...
|
||||
def _validate_params(self) -> None: ...
|
||||
def fit(self, raw_documents: Iterable, y=None) -> Any: ...
|
||||
def fit_transform(
|
||||
self, raw_documents: Iterable, y: Optional[Union[ndarray, List[int64]]] = None
|
||||
) -> NDArray: ...
|
||||
def fit_transform(self, raw_documents: Iterable, y: Optional[Union[ndarray, List[int64]]] = None) -> NDArray: ...
|
||||
def transform(self, raw_documents: Iterable) -> NDArray: ...
|
||||
def inverse_transform(self, X: NDArray | ArrayLike) -> list[ArrayLike]: ...
|
||||
@deprecated(
|
||||
"get_feature_names is deprecated in 1.0 and will be removed "
|
||||
"in 1.2. Please use get_feature_names_out instead."
|
||||
)
|
||||
@deprecated("get_feature_names is deprecated in 1.0 and will be removed " "in 1.2. Please use get_feature_names_out instead.")
|
||||
def get_feature_names(self) -> ArrayLike: ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
def _more_tags(self): ...
|
||||
|
||||
def _make_int_array() -> array.array: ...
|
||||
|
@ -189,9 +176,7 @@ class TfidfTransformer(_OneToOneFeatureMixin, TransformerMixin, BaseEstimator):
|
|||
smooth_idf: bool = True,
|
||||
sublinear_tf: bool = False,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: NDArray, y: Optional[Union[List[int64], ndarray]] = None
|
||||
) -> "TfidfTransformer": ...
|
||||
def fit(self, X: NDArray, y: Optional[Union[List[int64], ndarray]] = None) -> "TfidfTransformer": ...
|
||||
def transform(self, X: NDArray, copy: bool = True) -> NDArray: ...
|
||||
@property
|
||||
def idf_(self) -> NDArray: ...
|
||||
|
@ -235,8 +220,6 @@ class TfidfVectorizer(CountVectorizer):
|
|||
def idf_(self, value) -> NDArray: ...
|
||||
def _check_params(self) -> None: ...
|
||||
def fit(self, raw_documents: Iterable, y=None) -> Any: ...
|
||||
def fit_transform(
|
||||
self, raw_documents: Iterable, y: Optional[ndarray] = None
|
||||
) -> NDArray: ...
|
||||
def fit_transform(self, raw_documents: Iterable, y: Optional[ndarray] = None) -> NDArray: ...
|
||||
def transform(self, raw_documents: Iterable) -> NDArray: ...
|
||||
def _more_tags(self): ...
|
||||
|
|
|
@ -32,9 +32,7 @@ class SelectorMixin(TransformerMixin, metaclass=ABCMeta):
|
|||
def transform(self, X: ArrayLike) -> ArrayLike: ...
|
||||
def _transform(self, X: ndarray) -> ndarray: ...
|
||||
def inverse_transform(self, X: ArrayLike) -> NDArray: ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
|
||||
def _get_feature_importances(
|
||||
estimator: Union[RidgeCV, LogisticRegression, SVC],
|
||||
|
|
|
@ -20,9 +20,7 @@ from ..utils.metaestimators import available_if
|
|||
from numpy import float64, ndarray
|
||||
from sklearn.linear_model._ridge import RidgeCV
|
||||
|
||||
def _calculate_threshold(
|
||||
estimator: RidgeCV, importances: ndarray, threshold: float64
|
||||
) -> float: ...
|
||||
def _calculate_threshold(estimator: RidgeCV, importances: ndarray, threshold: float64) -> float: ...
|
||||
def _estimator_has(attr: str) -> Callable: ...
|
||||
|
||||
class SelectFromModel(MetaEstimatorMixin, SelectorMixin, BaseEstimator):
|
||||
|
@ -38,15 +36,11 @@ class SelectFromModel(MetaEstimatorMixin, SelectorMixin, BaseEstimator):
|
|||
) -> None: ...
|
||||
def _get_support_mask(self) -> ndarray: ...
|
||||
def _check_max_features(self, X: ndarray) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike, y: ArrayLike | None = None, **fit_params
|
||||
) -> "SelectFromModel": ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike | None = None, **fit_params) -> "SelectFromModel": ...
|
||||
@property
|
||||
def threshold_(self): ...
|
||||
@available_if(_estimator_has("partial_fit"))
|
||||
def partial_fit(
|
||||
self, X: ArrayLike, y: ArrayLike | None = None, **fit_params
|
||||
) -> Any: ...
|
||||
def partial_fit(self, X: ArrayLike, y: ArrayLike | None = None, **fit_params) -> Any: ...
|
||||
@property
|
||||
def n_features_in_(self): ...
|
||||
def _more_tags(self): ...
|
||||
|
|
|
@ -18,9 +18,7 @@ from ..utils.multiclass import check_classification_targets
|
|||
|
||||
def _compute_mi_cc(x: ndarray, y: ndarray, n_neighbors: int) -> Union[int, float64]: ...
|
||||
def _compute_mi_cd(c, d, n_neighbors): ...
|
||||
def _compute_mi(
|
||||
x: ndarray, y: ndarray, x_discrete: bool_, y_discrete: bool, n_neighbors: int = 3
|
||||
) -> Union[int, float64]: ...
|
||||
def _compute_mi(x: ndarray, y: ndarray, x_discrete: bool_, y_discrete: bool, n_neighbors: int = 3) -> Union[int, float64]: ...
|
||||
def _iterate_columns(X: ndarray, columns: None = None) -> Iterator[ndarray]: ...
|
||||
def _estimate_mi(
|
||||
X: ndarray,
|
||||
|
@ -35,17 +33,17 @@ def mutual_info_regression(
|
|||
X: ArrayLike | NDArray,
|
||||
y: ArrayLike,
|
||||
*,
|
||||
discrete_features: Literal["auto"]| bool | ArrayLike = "auto",
|
||||
discrete_features: Literal["auto"] | bool | ArrayLike = "auto",
|
||||
n_neighbors: int = 3,
|
||||
copy: bool = True,
|
||||
random_state: int | RandomState | None = None
|
||||
random_state: int | RandomState | None = None,
|
||||
) -> NDArray: ...
|
||||
def mutual_info_classif(
|
||||
X: ArrayLike | NDArray,
|
||||
y: ArrayLike,
|
||||
*,
|
||||
discrete_features: Literal["auto"]| bool | ArrayLike = "auto",
|
||||
discrete_features: Literal["auto"] | bool | ArrayLike = "auto",
|
||||
n_neighbors: int = 3,
|
||||
copy: bool = True,
|
||||
random_state: int | RandomState | None = None
|
||||
random_state: int | RandomState | None = None,
|
||||
) -> NDArray: ...
|
||||
|
|
|
@ -48,9 +48,7 @@ class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):
|
|||
@property
|
||||
def classes_(self) -> NDArray: ...
|
||||
def fit(self, X: NDArray | ArrayLike, y: ArrayLike, **fit_params) -> "RFE": ...
|
||||
def _fit(
|
||||
self, X: ndarray, y: ndarray, step_score: None = None, **fit_params
|
||||
) -> "RFE": ...
|
||||
def _fit(self, X: ndarray, y: ndarray, step_score: None = None, **fit_params) -> "RFE": ...
|
||||
@available_if(_estimator_has("predict"))
|
||||
def predict(self, X: ArrayLike) -> ArrayLike: ...
|
||||
@available_if(_estimator_has("score"))
|
||||
|
@ -77,9 +75,7 @@ class RFECV(RFE):
|
|||
n_jobs: int | None = None,
|
||||
importance_getter: str | Callable = "auto",
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: NDArray | ArrayLike, y: ArrayLike, groups: ArrayLike | None = None
|
||||
) -> "RFECV": ...
|
||||
def fit(self, X: NDArray | ArrayLike, y: ArrayLike, groups: ArrayLike | None = None) -> "RFECV": ...
|
||||
|
||||
# TODO: Remove in v1.2 when grid_scores_ is removed
|
||||
# mypy error: Decorated property not supported
|
||||
|
|
|
@ -30,9 +30,7 @@ class SequentialFeatureSelector(SelectorMixin, MetaEstimatorMixin, BaseEstimator
|
|||
cv: int | Generator | Iterable = 5,
|
||||
n_jobs: int | None = None,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike, y: ArrayLike | None = None
|
||||
) -> "SequentialFeatureSelector": ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike | None = None) -> "SequentialFeatureSelector": ...
|
||||
def _get_best_new_feature_score(
|
||||
self,
|
||||
estimator: Union[RidgeCV, KNeighborsClassifier],
|
||||
|
|
|
@ -31,19 +31,9 @@ def f_oneway(*args) -> tuple[float, float]: ...
|
|||
def f_classif(X: NDArray | ArrayLike, y: NDArray) -> tuple[NDArray, NDArray]: ...
|
||||
def _chisquare(f_obs: ndarray, f_exp: matrix) -> Tuple[ndarray, ndarray]: ...
|
||||
def chi2(X: NDArray | ArrayLike, y: ArrayLike) -> tuple[NDArray, NDArray]: ...
|
||||
def r_regression(
|
||||
X: NDArray | ArrayLike,
|
||||
y: ArrayLike,
|
||||
*,
|
||||
center: bool = True,
|
||||
force_finite: bool = True
|
||||
) -> NDArray: ...
|
||||
def r_regression(X: NDArray | ArrayLike, y: ArrayLike, *, center: bool = True, force_finite: bool = True) -> NDArray: ...
|
||||
def f_regression(
|
||||
X: NDArray | ArrayLike,
|
||||
y: ArrayLike,
|
||||
*,
|
||||
center: bool = True,
|
||||
force_finite: bool = True
|
||||
X: NDArray | ArrayLike, y: ArrayLike, *, center: bool = True, force_finite: bool = True
|
||||
) -> tuple[NDArray, NDArray]: ...
|
||||
|
||||
######################################################################
|
||||
|
@ -51,9 +41,7 @@ def f_regression(
|
|||
|
||||
class _BaseFilter(SelectorMixin, BaseEstimator):
|
||||
def __init__(self, score_func: Callable) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike, y: ArrayLike
|
||||
) -> Union[SelectPercentile, SelectKBest]: ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike) -> Union[SelectPercentile, SelectKBest]: ...
|
||||
def _check_params(self, X, y): ...
|
||||
def _more_tags(self) -> Dict[str, bool]: ...
|
||||
|
||||
|
@ -66,9 +54,7 @@ class SelectPercentile(_BaseFilter):
|
|||
def _get_support_mask(self) -> ndarray: ...
|
||||
|
||||
class SelectKBest(_BaseFilter):
|
||||
def __init__(
|
||||
self, score_func: Callable = ..., *, k: int | Literal["all"] = 10
|
||||
) -> None: ...
|
||||
def __init__(self, score_func: Callable = ..., *, k: int | Literal["all"] = 10) -> None: ...
|
||||
def _check_params(self, X: ndarray, y: ndarray) -> None: ...
|
||||
def _get_support_mask(self) -> ndarray: ...
|
||||
|
||||
|
@ -99,7 +85,7 @@ class GenericUnivariateSelect(_BaseFilter):
|
|||
score_func: Callable = ...,
|
||||
*,
|
||||
mode: Literal["percentile", "k_best", "fpr", "fdr", "fwe"] = "percentile",
|
||||
param: float | int = 1e-5
|
||||
param: float | int = 1e-5,
|
||||
): ...
|
||||
def _make_selector(self): ...
|
||||
def _more_tags(self): ...
|
||||
|
|
|
@ -44,9 +44,7 @@ class _BinaryGaussianProcessClassifierLaplace(BaseEstimator):
|
|||
copy_X_train: bool = True,
|
||||
random_state: int | RandomState | None = None,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike | Sequence[Any], y: ArrayLike
|
||||
) -> "_BinaryGaussianProcessClassifierLaplace": ...
|
||||
def fit(self, X: ArrayLike | Sequence[Any], y: ArrayLike) -> "_BinaryGaussianProcessClassifierLaplace": ...
|
||||
def predict(self, X: ArrayLike | Sequence[Any]) -> NDArray: ...
|
||||
def predict_proba(self, X: ArrayLike | Sequence[Any]) -> ArrayLike: ...
|
||||
def log_marginal_likelihood(
|
||||
|
@ -76,9 +74,7 @@ class GaussianProcessClassifier(ClassifierMixin, BaseEstimator):
|
|||
multi_class: Literal["one_vs_rest", "one_vs_one"] = "one_vs_rest",
|
||||
n_jobs: int | None = None,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike | Sequence[Any], y: ArrayLike
|
||||
) -> "GaussianProcessClassifier": ...
|
||||
def fit(self, X: ArrayLike | Sequence[Any], y: ArrayLike) -> "GaussianProcessClassifier": ...
|
||||
def predict(self, X: ArrayLike | Sequence[Any]) -> NDArray: ...
|
||||
def predict_proba(self, X: ArrayLike | Sequence[Any]) -> ArrayLike: ...
|
||||
@property
|
||||
|
|
|
@ -36,9 +36,7 @@ class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|||
copy_X_train: bool = True,
|
||||
random_state: int | RandomState | None = None,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike | Sequence[Any], y: ArrayLike
|
||||
) -> "GaussianProcessRegressor": ...
|
||||
def fit(self, X: ArrayLike | Sequence[Any], y: ArrayLike) -> "GaussianProcessRegressor": ...
|
||||
def predict(
|
||||
self,
|
||||
X: ArrayLike | Sequence[Any],
|
||||
|
|
|
@ -37,15 +37,9 @@ from ..exceptions import ConvergenceWarning
|
|||
|
||||
import warnings
|
||||
|
||||
def _check_length_scale(
|
||||
X: ndarray, length_scale: Union[float64, ndarray, float, int]
|
||||
) -> Union[ndarray, float64]: ...
|
||||
def _check_length_scale(X: ndarray, length_scale: Union[float64, ndarray, float, int]) -> Union[ndarray, float64]: ...
|
||||
|
||||
class Hyperparameter(
|
||||
namedtuple(
|
||||
"Hyperparameter", ("name", "value_type", "bounds", "n_elements", "fixed")
|
||||
)
|
||||
):
|
||||
class Hyperparameter(namedtuple("Hyperparameter", ("name", "value_type", "bounds", "n_elements", "fixed"))):
|
||||
|
||||
# A raw namedtuple is very memory efficient as it packs the attributes
|
||||
# in a struct to get rid of the __dict__ of attributes in particular it
|
||||
|
@ -236,9 +230,7 @@ class RBF(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
|
|||
def anisotropic(self) -> bool: ...
|
||||
@property
|
||||
def hyperparameter_length_scale(self) -> Hyperparameter: ...
|
||||
def __call__(
|
||||
self, X: NDArray, Y: NDArray | None = None, eval_gradient: bool = False
|
||||
) -> tuple[np.ndarray, np.ndarray]: ...
|
||||
def __call__(self, X: NDArray, Y: NDArray | None = None, eval_gradient: bool = False) -> tuple[np.ndarray, np.ndarray]: ...
|
||||
def __repr__(self) -> str: ...
|
||||
|
||||
class Matern(RBF):
|
||||
|
@ -248,9 +240,7 @@ class Matern(RBF):
|
|||
length_scale_bounds: tuple[float, float] | Literal["fixed"] = ...,
|
||||
nu: float = 1.5,
|
||||
) -> None: ...
|
||||
def __call__(
|
||||
self, X: NDArray, Y: NDArray | None = None, eval_gradient: bool = False
|
||||
) -> tuple[np.ndarray, np.ndarray]: ...
|
||||
def __call__(self, X: NDArray, Y: NDArray | None = None, eval_gradient: bool = False) -> tuple[np.ndarray, np.ndarray]: ...
|
||||
def __repr__(self) -> str: ...
|
||||
|
||||
class RationalQuadratic(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
|
||||
|
@ -265,9 +255,7 @@ class RationalQuadratic(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
|
|||
def hyperparameter_length_scale(self) -> Hyperparameter: ...
|
||||
@property
|
||||
def hyperparameter_alpha(self) -> Hyperparameter: ...
|
||||
def __call__(
|
||||
self, X: NDArray, Y: NDArray | None = None, eval_gradient: bool = False
|
||||
) -> tuple[np.ndarray, np.ndarray]: ...
|
||||
def __call__(self, X: NDArray, Y: NDArray | None = None, eval_gradient: bool = False) -> tuple[np.ndarray, np.ndarray]: ...
|
||||
def __repr__(self) -> str: ...
|
||||
|
||||
class ExpSineSquared(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
|
||||
|
@ -282,9 +270,7 @@ class ExpSineSquared(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
|
|||
def hyperparameter_length_scale(self) -> Hyperparameter: ...
|
||||
@property
|
||||
def hyperparameter_periodicity(self) -> Hyperparameter: ...
|
||||
def __call__(
|
||||
self, X: NDArray, Y: NDArray | None = None, eval_gradient: bool = False
|
||||
) -> tuple[np.ndarray, np.ndarray]: ...
|
||||
def __call__(self, X: NDArray, Y: NDArray | None = None, eval_gradient: bool = False) -> tuple[np.ndarray, np.ndarray]: ...
|
||||
def __repr__(self) -> str: ...
|
||||
|
||||
class DotProduct(Kernel):
|
||||
|
@ -295,9 +281,7 @@ class DotProduct(Kernel):
|
|||
) -> None: ...
|
||||
@property
|
||||
def hyperparameter_sigma_0(self) -> Hyperparameter: ...
|
||||
def __call__(
|
||||
self, X: NDArray, Y: NDArray | None = None, eval_gradient: bool = False
|
||||
) -> tuple[np.ndarray, np.ndarray]: ...
|
||||
def __call__(self, X: NDArray, Y: NDArray | None = None, eval_gradient: bool = False) -> tuple[np.ndarray, np.ndarray]: ...
|
||||
def diag(self, X: NDArray) -> np.ndarray: ...
|
||||
def is_stationary(self): ...
|
||||
def __repr__(self) -> str: ...
|
||||
|
@ -326,9 +310,7 @@ class PairwiseKernel(Kernel):
|
|||
): ...
|
||||
@property
|
||||
def hyperparameter_gamma(self): ...
|
||||
def __call__(
|
||||
self, X: NDArray, Y: NDArray | None = None, eval_gradient: bool = False
|
||||
) -> tuple[np.ndarray, np.ndarray]: ...
|
||||
def __call__(self, X: NDArray, Y: NDArray | None = None, eval_gradient: bool = False) -> tuple[np.ndarray, np.ndarray]: ...
|
||||
def diag(self, X: NDArray) -> np.ndarray: ...
|
||||
def is_stationary(self): ...
|
||||
def __repr__(self): ...
|
||||
|
|
|
@ -31,9 +31,7 @@ class _BaseImputer(TransformerMixin, BaseEstimator):
|
|||
def __init__(self, *, missing_values=..., add_indicator=False) -> None: ...
|
||||
def _fit_indicator(self, X: ndarray) -> None: ...
|
||||
def _transform_indicator(self, X: ndarray) -> Optional[ndarray]: ...
|
||||
def _concatenate_indicator(
|
||||
self, X_imputed: ndarray, X_indicator: Optional[ndarray]
|
||||
) -> ndarray: ...
|
||||
def _concatenate_indicator(self, X_imputed: ndarray, X_indicator: Optional[ndarray]) -> ndarray: ...
|
||||
def _concatenate_indicator_feature_names_out(self, names, input_features): ...
|
||||
def _more_tags(self) -> Dict[str, bool]: ...
|
||||
|
||||
|
@ -44,24 +42,18 @@ class SimpleImputer(_BaseImputer):
|
|||
missing_values: int | float | str | None = ...,
|
||||
strategy: str = "mean",
|
||||
fill_value: str | int | float | None = None,
|
||||
verbose: int|str = "deprecated",
|
||||
verbose: int | str = "deprecated",
|
||||
copy: bool = True,
|
||||
add_indicator: bool = False,
|
||||
) -> None: ...
|
||||
def _validate_input(self, X: ndarray, in_fit: bool) -> ndarray: ...
|
||||
def fit(
|
||||
self, X: NDArray | ArrayLike, y: Optional[ndarray] = None
|
||||
) -> "SimpleImputer": ...
|
||||
def fit(self, X: NDArray | ArrayLike, y: Optional[ndarray] = None) -> "SimpleImputer": ...
|
||||
def _sparse_fit(self, X, strategy, missing_values, fill_value): ...
|
||||
def _dense_fit(
|
||||
self, X: ndarray, strategy: str, missing_values: float, fill_value: int
|
||||
) -> ndarray: ...
|
||||
def _dense_fit(self, X: ndarray, strategy: str, missing_values: float, fill_value: int) -> ndarray: ...
|
||||
def transform(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
def inverse_transform(self, X: ArrayLike) -> NDArray: ...
|
||||
def _more_tags(self) -> Dict[str, bool]: ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
|
||||
class MissingIndicator(TransformerMixin, BaseEstimator):
|
||||
def __init__(
|
||||
|
@ -74,13 +66,9 @@ class MissingIndicator(TransformerMixin, BaseEstimator):
|
|||
) -> None: ...
|
||||
def _get_missing_features_info(self, X: ndarray) -> Tuple[ndarray, ndarray]: ...
|
||||
def _validate_input(self, X, in_fit): ...
|
||||
def _fit(
|
||||
self, X: ndarray, y: None = None, precomputed: bool = False
|
||||
) -> ndarray: ...
|
||||
def _fit(self, X: ndarray, y: None = None, precomputed: bool = False) -> ndarray: ...
|
||||
def fit(self, X: NDArray | ArrayLike, y=None) -> Any: ...
|
||||
def transform(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
def fit_transform(self, X: NDArray | ArrayLike, y=None) -> NDArray: ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
def _more_tags(self): ...
|
||||
|
|
|
@ -36,12 +36,8 @@ class IterativeImputer(_BaseImputer):
|
|||
max_iter: int = 10,
|
||||
tol: float = 1e-3,
|
||||
n_nearest_features: int | None = None,
|
||||
initial_strategy: Literal[
|
||||
"mean", "median", "most_frequent", "constant"
|
||||
] = "mean",
|
||||
imputation_order: Literal[
|
||||
"ascending", "descending", "roman", "arabic", "random"
|
||||
] = "ascending",
|
||||
initial_strategy: Literal["mean", "median", "most_frequent", "constant"] = "mean",
|
||||
imputation_order: Literal["ascending", "descending", "roman", "arabic", "random"] = "ascending",
|
||||
skip_complete: bool = False,
|
||||
min_value: float | ArrayLike = ...,
|
||||
max_value: float | ArrayLike = ...,
|
||||
|
@ -55,9 +51,7 @@ class IterativeImputer(_BaseImputer):
|
|||
mask_missing_values: ndarray,
|
||||
feat_idx: int64,
|
||||
neighbor_feat_idx: ndarray,
|
||||
estimator: Optional[
|
||||
Union[KNeighborsRegressor, BayesianRidge, Pipeline, RandomForestRegressor]
|
||||
] = None,
|
||||
estimator: Optional[Union[KNeighborsRegressor, BayesianRidge, Pipeline, RandomForestRegressor]] = None,
|
||||
fit_mode: bool = True,
|
||||
) -> Union[
|
||||
Tuple[ndarray, RandomForestRegressor],
|
||||
|
@ -65,21 +59,13 @@ class IterativeImputer(_BaseImputer):
|
|||
Tuple[ndarray, KNeighborsRegressor],
|
||||
Tuple[ndarray, Pipeline],
|
||||
]: ...
|
||||
def _get_neighbor_feat_idx(
|
||||
self, n_features: int, feat_idx: int64, abs_corr_mat: Optional[ndarray]
|
||||
) -> ndarray: ...
|
||||
def _get_neighbor_feat_idx(self, n_features: int, feat_idx: int64, abs_corr_mat: Optional[ndarray]) -> ndarray: ...
|
||||
def _get_ordered_idx(self, mask_missing_values: ndarray) -> ndarray: ...
|
||||
def _get_abs_corr_mat(
|
||||
self, X_filled: ndarray, tolerance: float = 1e-6
|
||||
) -> Optional[ndarray]: ...
|
||||
def _initial_imputation(
|
||||
self, X: ndarray, in_fit: bool = False
|
||||
) -> Tuple[ndarray, ndarray, ndarray, ndarray]: ...
|
||||
def _get_abs_corr_mat(self, X_filled: ndarray, tolerance: float = 1e-6) -> Optional[ndarray]: ...
|
||||
def _initial_imputation(self, X: ndarray, in_fit: bool = False) -> Tuple[ndarray, ndarray, ndarray, ndarray]: ...
|
||||
@staticmethod
|
||||
def _validate_limit(limit: float, limit_type: str, n_features: int) -> ndarray: ...
|
||||
def fit_transform(self, X: ArrayLike, y: Optional[ndarray] = None) -> ArrayLike: ...
|
||||
def transform(self, X: ArrayLike) -> ArrayLike: ...
|
||||
def fit(self, X: ArrayLike, y=None) -> Any: ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
|
|
|
@ -39,6 +39,4 @@ class KNNImputer(_BaseImputer):
|
|||
) -> ndarray: ...
|
||||
def fit(self, X: ArrayLike, y: Optional[ndarray] = None) -> "KNNImputer": ...
|
||||
def transform(self, X: ArrayLike) -> ArrayLike: ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
|
|
|
@ -6,7 +6,6 @@ import numpy as np
|
|||
from numpy.random import RandomState
|
||||
from pandas import DataFrame
|
||||
|
||||
|
||||
from ..ensemble._bagging import _generate_indices
|
||||
from ..metrics import check_scoring
|
||||
from ..metrics._scorer import _check_multimetric_scoring, _MultimetricScorer
|
||||
|
@ -37,9 +36,7 @@ def _calculate_permutation_scores(
|
|||
scorer: Callable,
|
||||
max_samples: int,
|
||||
) -> ndarray: ...
|
||||
def _create_importances_bunch(
|
||||
baseline_score: float64, permuted_score: ndarray
|
||||
) -> Bunch: ...
|
||||
def _create_importances_bunch(baseline_score: float64, permuted_score: ndarray) -> Bunch: ...
|
||||
def permutation_importance(
|
||||
estimator: Union[RandomForestClassifier, GradientBoostingRegressor],
|
||||
X: NDArray | DataFrame,
|
||||
|
|
|
@ -15,9 +15,7 @@ from pandas import DataFrame
|
|||
from matplotlib.axes import Axes
|
||||
from sklearn.base import BaseEstimator
|
||||
|
||||
def _check_boundary_response_method(
|
||||
estimator: BaseEstimator, response_method: str
|
||||
) -> Callable: ...
|
||||
def _check_boundary_response_method(estimator: BaseEstimator, response_method: str) -> Callable: ...
|
||||
|
||||
class DecisionBoundaryDisplay:
|
||||
def __init__(
|
||||
|
@ -46,9 +44,7 @@ class DecisionBoundaryDisplay:
|
|||
grid_resolution: int = 100,
|
||||
eps: float = 1.0,
|
||||
plot_method: Literal["contourf", "contour", "pcolormesh"] = "contourf",
|
||||
response_method: Literal[
|
||||
"auto", "predict_proba", "decision_function", "predict"
|
||||
] = "auto",
|
||||
response_method: Literal["auto", "predict_proba", "decision_function", "predict"] = "auto",
|
||||
xlabel: str | None = None,
|
||||
ylabel: str | None = None,
|
||||
ax: Axes | None = None,
|
||||
|
|
|
@ -14,7 +14,6 @@ from matplotlib.axes import Axes
|
|||
from scipy import sparse
|
||||
from scipy.stats.mstats import mquantiles
|
||||
|
||||
|
||||
from .. import partial_dependence
|
||||
from ...base import is_regressor
|
||||
from ...utils import Bunch
|
||||
|
@ -40,7 +39,7 @@ from sklearn.tree._classes import DecisionTreeRegressor
|
|||
def plot_partial_dependence(
|
||||
estimator: BaseEstimator,
|
||||
X: ArrayLike | DataFrame,
|
||||
features: Sequence[int| str|tuple[int, int]| tuple[str, str]],
|
||||
features: Sequence[int | str | tuple[int, int] | tuple[str, str]],
|
||||
*,
|
||||
feature_names: ArrayLike | None = None,
|
||||
target: int | None = None,
|
||||
|
@ -102,7 +101,7 @@ class PartialDependenceDisplay:
|
|||
feature_names: ArrayLike,
|
||||
target_idx: int,
|
||||
deciles: Mapping,
|
||||
pdp_lim: Mapping | None|str = "deprecated",
|
||||
pdp_lim: Mapping | None | str = "deprecated",
|
||||
kind: Literal["average", "individual", "both"] | Sequence[str] = "average",
|
||||
subsample: float | int | None = 1000,
|
||||
random_state: int | RandomState | None = None,
|
||||
|
@ -112,7 +111,7 @@ class PartialDependenceDisplay:
|
|||
cls,
|
||||
estimator: BaseEstimator,
|
||||
X: ArrayLike | DataFrame,
|
||||
features: Sequence[int| str| tuple[int, int]|tuple[str, str]],
|
||||
features: Sequence[int | str | tuple[int, int] | tuple[str, str]],
|
||||
*,
|
||||
feature_names: ArrayLike | None = None,
|
||||
target: int | None = None,
|
||||
|
|
|
@ -27,7 +27,7 @@ def isotonic_regression(
|
|||
sample_weight: ArrayLike | None = None,
|
||||
y_min: float | None = None,
|
||||
y_max: float | None = None,
|
||||
increasing: bool = True
|
||||
increasing: bool = True,
|
||||
) -> list[float]: ...
|
||||
|
||||
class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):
|
||||
|
@ -37,7 +37,7 @@ class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):
|
|||
y_min: float | None = None,
|
||||
y_max: float | None = None,
|
||||
increasing: bool | Literal["auto"] = True,
|
||||
out_of_bounds: Literal["nan", "clip", "raise"] = "nan"
|
||||
out_of_bounds: Literal["nan", "clip", "raise"] = "nan",
|
||||
) -> None: ...
|
||||
def _check_input_data_shape(self, X: ndarray) -> None: ...
|
||||
def _build_f(self, X: ndarray, y: ndarray) -> None: ...
|
||||
|
@ -48,9 +48,7 @@ class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):
|
|||
sample_weight: Optional[ndarray],
|
||||
trim_duplicates: bool = True,
|
||||
) -> Tuple[ndarray, ndarray]: ...
|
||||
def fit(
|
||||
self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> "IsotonicRegression": ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None) -> "IsotonicRegression": ...
|
||||
def transform(self, T: ArrayLike) -> NDArray: ...
|
||||
def predict(self, T: ArrayLike) -> NDArray: ...
|
||||
|
||||
|
@ -58,9 +56,7 @@ class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):
|
|||
# `_ClassNamePrefixFeaturesOutMixin`` because `input_features` are ignored.
|
||||
# `input_features` are ignored because `IsotonicRegression` accepts 1d
|
||||
# arrays and the semantics of `feature_names_in_` are not clear for 1d arrays.
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
def __getstate__(self): ...
|
||||
def __setstate__(self, state): ...
|
||||
def _more_tags(self): ...
|
||||
|
|
|
@ -24,9 +24,7 @@ from .utils.validation import _check_feature_names_in
|
|||
from .metrics.pairwise import pairwise_kernels, KERNEL_PARAMS
|
||||
from .utils.validation import check_non_negative
|
||||
|
||||
class PolynomialCountSketch(
|
||||
_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator
|
||||
):
|
||||
class PolynomialCountSketch(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
|
@ -36,9 +34,7 @@ class PolynomialCountSketch(
|
|||
n_components: int = 100,
|
||||
random_state: int | RandomState | None = None,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: NDArray | ArrayLike, y: ArrayLike | None = None
|
||||
) -> "PolynomialCountSketch": ...
|
||||
def fit(self, X: NDArray | ArrayLike, y: ArrayLike | None = None) -> "PolynomialCountSketch": ...
|
||||
def transform(self, X: ArrayLike) -> ArrayLike: ...
|
||||
|
||||
class RBFSampler(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
||||
|
@ -49,14 +45,10 @@ class RBFSampler(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimat
|
|||
n_components: int = 100,
|
||||
random_state: int | RandomState | None = None,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: NDArray | ArrayLike, y: ArrayLike | None = None
|
||||
) -> "RBFSampler": ...
|
||||
def fit(self, X: NDArray | ArrayLike, y: ArrayLike | None = None) -> "RBFSampler": ...
|
||||
def transform(self, X: NDArray | ArrayLike) -> ArrayLike: ...
|
||||
|
||||
class SkewedChi2Sampler(
|
||||
_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator
|
||||
):
|
||||
class SkewedChi2Sampler(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
|
@ -68,14 +60,10 @@ class SkewedChi2Sampler(
|
|||
def transform(self, X: ArrayLike) -> ArrayLike: ...
|
||||
|
||||
class AdditiveChi2Sampler(TransformerMixin, BaseEstimator):
|
||||
def __init__(
|
||||
self, *, sample_steps: int = 2, sample_interval: float | None = None
|
||||
): ...
|
||||
def __init__(self, *, sample_steps: int = 2, sample_interval: float | None = None): ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike | None = None) -> Any: ...
|
||||
def transform(self, X: NDArray | ArrayLike) -> NDArray: ...
|
||||
def get_feature_names_out(
|
||||
self, input_features: ArrayLike | None = None
|
||||
) -> np.ndarray: ...
|
||||
def get_feature_names_out(self, input_features: ArrayLike | None = None) -> np.ndarray: ...
|
||||
def _transform_dense(self, X): ...
|
||||
def _transform_sparse(self, X): ...
|
||||
def _more_tags(self): ...
|
||||
|
|
|
@ -26,7 +26,6 @@ from scipy import sparse
|
|||
from scipy.sparse.linalg import lsqr
|
||||
from scipy.special import expit
|
||||
|
||||
|
||||
from ..base import BaseEstimator, ClassifierMixin, RegressorMixin, MultiOutputMixin
|
||||
from ..preprocessing._data import _is_constant_feature
|
||||
from ..utils import check_array
|
||||
|
@ -43,7 +42,6 @@ from scipy.sparse._csc import csc_matrix
|
|||
from scipy.sparse._csr import csr_matrix
|
||||
from sklearn.linear_model._stochastic_gradient import SGDClassifier
|
||||
|
||||
|
||||
# TODO: bayesian_ridge_regression and bayesian_regression_ard
|
||||
# should be squashed into its respective objects.
|
||||
|
||||
|
@ -54,9 +52,7 @@ SPARSE_INTERCEPT_DECAY: float = ...
|
|||
# FIXME in 1.2: parameter 'normalize' should be removed from linear models
|
||||
# in cases where now normalize=False. The default value of 'normalize' should
|
||||
# be changed to False in linear models where now normalize=True
|
||||
def _deprecate_normalize(
|
||||
normalize: Union[str, bool], default: bool, estimator_name: str
|
||||
) -> bool: ...
|
||||
def _deprecate_normalize(normalize: Union[str, bool], default: bool, estimator_name: str) -> bool: ...
|
||||
def make_dataset(
|
||||
X: ArrayLike,
|
||||
y: ArrayLike,
|
||||
|
@ -92,9 +88,7 @@ class LinearModel(BaseEstimator, metaclass=ABCMeta):
|
|||
def fit(self, X, y): ...
|
||||
def _decision_function(self, X: Union[ndarray, csr_matrix]) -> ndarray: ...
|
||||
def predict(self, X: ArrayLike | NDArray) -> NDArray: ...
|
||||
def _set_intercept(
|
||||
self, X_offset: ndarray, y_offset: Union[ndarray, float64], X_scale: ndarray
|
||||
) -> None: ...
|
||||
def _set_intercept(self, X_offset: ndarray, y_offset: Union[ndarray, float64], X_scale: ndarray) -> None: ...
|
||||
def _more_tags(self) -> Dict[str, bool]: ...
|
||||
|
||||
# XXX Should this derive from LinearModel? It should be a mixin, not an ABC.
|
||||
|
@ -113,7 +107,7 @@ class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):
|
|||
self,
|
||||
*,
|
||||
fit_intercept: bool = True,
|
||||
normalize: bool|str = "deprecated",
|
||||
normalize: bool | str = "deprecated",
|
||||
copy_X: bool = True,
|
||||
n_jobs: int | None = None,
|
||||
positive: bool = False,
|
||||
|
|
|
@ -33,16 +33,12 @@ class BayesianRidge(RegressorMixin, LinearModel):
|
|||
lambda_init: float | None = None,
|
||||
compute_score: bool = False,
|
||||
fit_intercept: bool = True,
|
||||
normalize: bool|str = "deprecated",
|
||||
normalize: bool | str = "deprecated",
|
||||
copy_X: bool = True,
|
||||
verbose: bool = False,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: NDArray, y: NDArray, sample_weight: NDArray | None = None
|
||||
) -> "BayesianRidge": ...
|
||||
def predict(
|
||||
self, X: NDArray | ArrayLike, return_std: bool = False
|
||||
) -> tuple[ArrayLike, ArrayLike]: ...
|
||||
def fit(self, X: NDArray, y: NDArray, sample_weight: NDArray | None = None) -> "BayesianRidge": ...
|
||||
def predict(self, X: NDArray | ArrayLike, return_std: bool = False) -> tuple[ArrayLike, ArrayLike]: ...
|
||||
def _update_coef_(
|
||||
self,
|
||||
X: ndarray,
|
||||
|
@ -83,15 +79,11 @@ class ARDRegression(RegressorMixin, LinearModel):
|
|||
compute_score: bool = False,
|
||||
threshold_lambda: float = 1.0e4,
|
||||
fit_intercept: bool = True,
|
||||
normalize: bool|str = "deprecated",
|
||||
normalize: bool | str = "deprecated",
|
||||
copy_X: bool = True,
|
||||
verbose: bool = False,
|
||||
) -> None: ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike) -> "ARDRegression": ...
|
||||
def _update_sigma_woodbury(self, X, alpha_, lambda_, keep_lambda): ...
|
||||
def _update_sigma(
|
||||
self, X: ndarray, alpha_: float64, lambda_: ndarray, keep_lambda: ndarray
|
||||
) -> ndarray: ...
|
||||
def predict(
|
||||
self, X: NDArray | ArrayLike, return_std: bool = False
|
||||
) -> tuple[ArrayLike, ArrayLike]: ...
|
||||
def _update_sigma(self, X: ndarray, alpha_: float64, lambda_: ndarray, keep_lambda: ndarray) -> ndarray: ...
|
||||
def predict(self, X: NDArray | ArrayLike, return_std: bool = False) -> tuple[ArrayLike, ArrayLike]: ...
|
||||
|
|
|
@ -57,9 +57,7 @@ class _GeneralizedLinearRegressor(RegressorMixin, BaseEstimator):
|
|||
def _get_loss(self): ...
|
||||
|
||||
# TODO(1.3): remove
|
||||
@deprecated( # type: ignore
|
||||
"Attribute `family` was deprecated in version 1.1 and will be removed in 1.3."
|
||||
)
|
||||
@deprecated("Attribute `family` was deprecated in version 1.1 and will be removed in 1.3.") # type: ignore
|
||||
@property
|
||||
def family(self): ...
|
||||
|
||||
|
|
|
@ -36,6 +36,4 @@ class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator):
|
|||
fit_intercept: bool = True,
|
||||
tol: float = 1e-05,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> "HuberRegressor": ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None) -> "HuberRegressor": ...
|
||||
|
|
|
@ -17,7 +17,6 @@ from numpy.random import RandomState
|
|||
from scipy import linalg, interpolate
|
||||
from scipy.linalg.lapack import get_lapack_funcs
|
||||
|
||||
|
||||
from ._base import LinearModel, LinearRegression
|
||||
from ._base import _deprecate_normalize, _preprocess_data
|
||||
from ..base import RegressorMixin, MultiOutputMixin
|
||||
|
@ -111,9 +110,7 @@ class Lars(MultiOutputMixin, RegressorMixin, LinearModel):
|
|||
random_state: int | RandomState | None = None,
|
||||
) -> None: ...
|
||||
@staticmethod
|
||||
def _get_gram(
|
||||
precompute: Union[ndarray, str], X: ndarray, y: ndarray
|
||||
) -> ndarray: ...
|
||||
def _get_gram(precompute: Union[ndarray, str], X: ndarray, y: ndarray) -> ndarray: ...
|
||||
def _fit(
|
||||
self,
|
||||
X: ndarray,
|
||||
|
@ -124,9 +121,7 @@ class Lars(MultiOutputMixin, RegressorMixin, LinearModel):
|
|||
normalize: bool,
|
||||
Xy: Optional[ndarray] = None,
|
||||
) -> Union[LassoLars, LassoLarsCV, Lars]: ...
|
||||
def fit(
|
||||
self, X: ArrayLike, y: ArrayLike, Xy: ArrayLike | None = None
|
||||
) -> Union[LassoLars, Lars]: ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike, Xy: ArrayLike | None = None) -> Union[LassoLars, Lars]: ...
|
||||
|
||||
class LassoLars(Lars):
|
||||
|
||||
|
@ -226,9 +221,5 @@ class LassoLarsIC(LassoLars):
|
|||
noise_variance: float | None = None,
|
||||
) -> None: ...
|
||||
def _more_tags(self): ...
|
||||
def fit(
|
||||
self, X: ArrayLike, y: ArrayLike, copy_X: bool | None = None
|
||||
) -> "LassoLarsIC": ...
|
||||
def _estimate_noise_variance(
|
||||
self, X: ndarray, y: ndarray, positive: bool
|
||||
) -> float64: ...
|
||||
def fit(self, X: ArrayLike, y: ArrayLike, copy_X: bool | None = None) -> "LassoLarsIC": ...
|
||||
def _estimate_noise_variance(self, X: ndarray, y: ndarray, positive: bool) -> float64: ...
|
||||
|
|
|
@ -16,7 +16,6 @@ import warnings
|
|||
import numpy as np
|
||||
from scipy import optimize
|
||||
|
||||
|
||||
from ._base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator
|
||||
from ._linear_loss import LinearModelLoss
|
||||
from ._sag import sag_solver
|
||||
|
@ -146,7 +145,5 @@ class LogisticRegressionCV(LogisticRegression, LinearClassifierMixin, BaseEstima
|
|||
y: ArrayLike,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
) -> Any: ...
|
||||
def score(
|
||||
self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def score(self, X: ArrayLike, y: ArrayLike, sample_weight: ArrayLike | None = None) -> float: ...
|
||||
def _more_tags(self): ...
|
||||
|
|
|
@ -13,7 +13,6 @@ import numpy as np
|
|||
from scipy import linalg
|
||||
from scipy.linalg.lapack import get_lapack_funcs
|
||||
|
||||
|
||||
from ._base import LinearModel, _pre_fit, _deprecate_normalize
|
||||
from ..base import RegressorMixin, MultiOutputMixin
|
||||
from ..utils import as_float_array, check_array
|
||||
|
|
|
@ -25,9 +25,7 @@ class QuantileRegressor(LinearModel, RegressorMixin, BaseEstimator):
|
|||
quantile: float = 0.5,
|
||||
alpha: float = 1.0,
|
||||
fit_intercept: bool = True,
|
||||
solver: Literal[
|
||||
"highs-ds", "highs-ipm", "highs", "interior-point", "revised simplex"
|
||||
] = "interior-point",
|
||||
solver: Literal["highs-ds", "highs-ipm", "highs", "interior-point", "revised simplex"] = "interior-point",
|
||||
solver_options: Mapping | None = None,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
|
|
|
@ -21,13 +21,9 @@ from ..exceptions import ConvergenceWarning
|
|||
|
||||
_EPSILON = ...
|
||||
|
||||
def _dynamic_max_trials(
|
||||
n_inliers: int64, n_samples: int, min_samples: int, probability: float
|
||||
) -> float: ...
|
||||
def _dynamic_max_trials(n_inliers: int64, n_samples: int, min_samples: int, probability: float) -> float: ...
|
||||
|
||||
class RANSACRegressor(
|
||||
MetaEstimatorMixin, RegressorMixin, MultiOutputMixin, BaseEstimator
|
||||
):
|
||||
class RANSACRegressor(MetaEstimatorMixin, RegressorMixin, MultiOutputMixin, BaseEstimator):
|
||||
def __init__(
|
||||
self,
|
||||
estimator: None = None,
|
||||
|
|
|
@ -4,7 +4,6 @@ from typing import List, Optional, Tuple, Union, Literal, Any, Mapping, Callable
|
|||
from numpy.typing import NDArray, ArrayLike
|
||||
from numpy.random import RandomState
|
||||
|
||||
|
||||
# Author: Mathieu Blondel <mathieu@mblondel.org>
|
||||
# Reuben Fletcher-Costin <reuben.fletchercostin@gmail.com>
|
||||
# Fabian Pedregosa <fabian@fseoane.net>
|
||||
|
@ -45,9 +44,7 @@ from scipy.sparse._coo import coo_matrix
|
|||
from scipy.sparse._csr import csr_matrix
|
||||
from scipy.sparse.linalg._interface import _CustomLinearOperator
|
||||
|
||||
def _get_rescaled_operator(
|
||||
X: csr_matrix, X_offset: ndarray, sample_weight_sqrt: ndarray
|
||||
) -> _CustomLinearOperator: ...
|
||||
def _get_rescaled_operator(X: csr_matrix, X_offset: ndarray, sample_weight_sqrt: ndarray) -> _CustomLinearOperator: ...
|
||||
def _solve_sparse_cg(
|
||||
X: csr_matrix,
|
||||
y: ndarray,
|
||||
|
@ -91,18 +88,14 @@ def _solve_lbfgs(
|
|||
X_scale=None,
|
||||
sample_weight_sqrt=None,
|
||||
): ...
|
||||
def _get_valid_accept_sparse(
|
||||
is_X_sparse: bool, solver: str
|
||||
) -> Union[List[str], str]: ...
|
||||
def _get_valid_accept_sparse(is_X_sparse: bool, solver: str) -> Union[List[str], str]: ...
|
||||
def ridge_regression(
|
||||
X: NDArray,
|
||||
y: NDArray,
|
||||
alpha: float | ArrayLike,
|
||||
*,
|
||||
sample_weight: float | ArrayLike | None = None,
|
||||
solver: Literal[
|
||||
"auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"
|
||||
] = "auto",
|
||||
solver: Literal["auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"] = "auto",
|
||||
max_iter: int | None = None,
|
||||
tol: float = 1e-3,
|
||||
verbose: int = 0,
|
||||
|
@ -163,15 +156,11 @@ class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge):
|
|||
copy_X: bool = True,
|
||||
max_iter: int | None = None,
|
||||
tol: float = 1e-3,
|
||||
solver: Literal[
|
||||
"auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"
|
||||
] = "auto",
|
||||
solver: Literal["auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"] = "auto",
|
||||
positive: bool = False,
|
||||
random_state: int | RandomState | None = None,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: NDArray, y: NDArray, sample_weight: float | NDArray | None = None
|
||||
) -> "Ridge": ...
|
||||
def fit(self, X: NDArray, y: NDArray, sample_weight: float | NDArray | None = None) -> "Ridge": ...
|
||||
|
||||
class _RidgeClassifierMixin(LinearClassifierMixin):
|
||||
def _prepare_data(
|
||||
|
@ -193,15 +182,11 @@ class RidgeClassifier(_RidgeClassifierMixin, _BaseRidge):
|
|||
max_iter: int | None = None,
|
||||
tol: float = 1e-3,
|
||||
class_weight: Mapping | Literal["balanced"] | None = None,
|
||||
solver: Literal[
|
||||
"auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"
|
||||
] = "auto",
|
||||
solver: Literal["auto", "svd", "cholesky", "lsqr", "sparse_cg", "sag", "saga", "lbfgs"] = "auto",
|
||||
positive: bool = False,
|
||||
random_state: int | RandomState | None = None,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: NDArray, y: NDArray, sample_weight: float | NDArray | None = None
|
||||
) -> "RidgeClassifier": ...
|
||||
def fit(self, X: NDArray, y: NDArray, sample_weight: float | NDArray | None = None) -> "RidgeClassifier": ...
|
||||
|
||||
def _check_gcv_mode(X: ndarray, gcv_mode: None) -> str: ...
|
||||
def _find_smallest_angle(query: ndarray, vectors: ndarray) -> int64: ...
|
||||
|
@ -243,14 +228,10 @@ class _RidgeGCV(LinearModel):
|
|||
def _decomp_diag(v_prime: ndarray, Q: ndarray) -> ndarray: ...
|
||||
@staticmethod
|
||||
def _diag_dot(D: ndarray, B: ndarray) -> ndarray: ...
|
||||
def _compute_gram(
|
||||
self, X: ndarray, sqrt_sw: ndarray
|
||||
) -> Tuple[ndarray, ndarray]: ...
|
||||
def _compute_gram(self, X: ndarray, sqrt_sw: ndarray) -> Tuple[ndarray, ndarray]: ...
|
||||
def _compute_covariance(self, X, sqrt_sw): ...
|
||||
def _sparse_multidot_diag(self, X, A, X_mean, sqrt_sw): ...
|
||||
def _eigen_decompose_gram(
|
||||
self, X: ndarray, y: ndarray, sqrt_sw: ndarray
|
||||
) -> Tuple[ndarray, ndarray, ndarray, ndarray]: ...
|
||||
def _eigen_decompose_gram(self, X: ndarray, y: ndarray, sqrt_sw: ndarray) -> Tuple[ndarray, ndarray, ndarray, ndarray]: ...
|
||||
def _solve_eigen_gram(
|
||||
self,
|
||||
alpha: float,
|
||||
|
@ -262,12 +243,8 @@ class _RidgeGCV(LinearModel):
|
|||
QT_y: ndarray,
|
||||
) -> Tuple[ndarray, ndarray]: ...
|
||||
def _eigen_decompose_covariance(self, X, y, sqrt_sw): ...
|
||||
def _solve_eigen_covariance_no_intercept(
|
||||
self, alpha, y, sqrt_sw, X_mean, eigvals, V, X
|
||||
): ...
|
||||
def _solve_eigen_covariance_intercept(
|
||||
self, alpha, y, sqrt_sw, X_mean, eigvals, V, X
|
||||
): ...
|
||||
def _solve_eigen_covariance_no_intercept(self, alpha, y, sqrt_sw, X_mean, eigvals, V, X): ...
|
||||
def _solve_eigen_covariance_intercept(self, alpha, y, sqrt_sw, X_mean, eigvals, V, X): ...
|
||||
def _solve_eigen_covariance(self, alpha, y, sqrt_sw, X_mean, eigvals, V, X): ...
|
||||
def _svd_decompose_design_matrix(
|
||||
self, X: ndarray, y: ndarray, sqrt_sw: ndarray
|
||||
|
@ -282,9 +259,7 @@ class _RidgeGCV(LinearModel):
|
|||
U: ndarray,
|
||||
UT_y: ndarray,
|
||||
) -> Tuple[ndarray, ndarray]: ...
|
||||
def fit(
|
||||
self, X: NDArray, y: NDArray, sample_weight: float | NDArray | None = None
|
||||
) -> "_RidgeGCV": ...
|
||||
def fit(self, X: NDArray, y: NDArray, sample_weight: float | NDArray | None = None) -> "_RidgeGCV": ...
|
||||
|
||||
class _BaseRidgeCV(LinearModel):
|
||||
def __init__(
|
||||
|
@ -299,9 +274,7 @@ class _BaseRidgeCV(LinearModel):
|
|||
store_cv_values=False,
|
||||
alpha_per_target=False,
|
||||
) -> None: ...
|
||||
def fit(
|
||||
self, X: NDArray, y: NDArray, sample_weight: float | NDArray | None = None
|
||||
) -> "RidgeCV": ...
|
||||
def fit(self, X: NDArray, y: NDArray, sample_weight: float | NDArray | None = None) -> "RidgeCV": ...
|
||||
|
||||
class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV):
|
||||
pass
|
||||
|
@ -318,7 +291,5 @@ class RidgeClassifierCV(_RidgeClassifierMixin, _BaseRidgeCV):
|
|||
class_weight: Mapping | Literal["balanced"] | None = None,
|
||||
store_cv_values: bool = False,
|
||||
): ...
|
||||
def fit(
|
||||
self, X: NDArray, y: NDArray, sample_weight: float | NDArray | None = None
|
||||
) -> Any: ...
|
||||
def fit(self, X: NDArray, y: NDArray, sample_weight: float | NDArray | None = None) -> Any: ...
|
||||
def _more_tags(self): ...
|
||||
|
|
|
@ -13,7 +13,6 @@ import warnings
|
|||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
|
||||
from ..base import clone, is_classifier
|
||||
from ._base import LinearClassifierMixin, SparseCoefMixin
|
||||
from ._base import make_dataset
|
||||
|
@ -33,22 +32,20 @@ from scipy.sparse._csr import csr_matrix
|
|||
from sklearn.linear_model._passive_aggressive import PassiveAggressiveClassifier
|
||||
from sklearn.linear_model._perceptron import Perceptron
|
||||
|
||||
|
||||
|
||||
class LossFunction:
|
||||
def loss(self, p:float, y:float)->float:...
|
||||
def dloss(self, p:float, y: float)->float:...
|
||||
def loss(self, p: float, y: float) -> float: ...
|
||||
def dloss(self, p: float, y: float) -> float: ...
|
||||
|
||||
class Regression(LossFunction):...
|
||||
class Classification(LossFunction):...
|
||||
class Regression(LossFunction): ...
|
||||
class Classification(LossFunction): ...
|
||||
class Log(Classification): ...
|
||||
class SquaredLoss(Regression):...
|
||||
class ModifiedHuber(Classification):...
|
||||
class Hinge(Classification):...
|
||||
class SquaredHinge(Classification):...
|
||||
class Huber(Regression):...
|
||||
class EpsilonInsensitive(Regression):...
|
||||
class SquaredEpsilonInsensitive(Regression):...
|
||||
class SquaredLoss(Regression): ...
|
||||
class ModifiedHuber(Classification): ...
|
||||
class Hinge(Classification): ...
|
||||
class SquaredHinge(Classification): ...
|
||||
class Huber(Regression): ...
|
||||
class EpsilonInsensitive(Regression): ...
|
||||
class SquaredEpsilonInsensitive(Regression): ...
|
||||
|
||||
LEARNING_RATE_TYPES: dict = ...
|
||||
|
||||
|
@ -98,9 +95,7 @@ class BaseSGD(SparseCoefMixin, BaseEstimator, metaclass=ABCMeta):
|
|||
@abstractmethod
|
||||
def fit(self, X, y): ...
|
||||
def _validate_params(self, for_partial_fit: bool = False) -> None: ...
|
||||
def _get_loss_function(
|
||||
self, loss: str
|
||||
) -> Union[ModifiedHuber, Hinge, Log, SquaredLoss]: ...
|
||||
def _get_loss_function(self, loss: str) -> Union[ModifiedHuber, Hinge, Log, SquaredLoss]: ...
|
||||
def _get_learning_rate_type(self, learning_rate: str) -> int: ...
|
||||
def _get_penalty_type(self, penalty: Optional[str]) -> int: ...
|
||||
def _allocate_parameter_mem(
|
||||
|
@ -125,10 +120,7 @@ def _prepare_fit_binary(
|
|||
est: Union[PassiveAggressiveClassifier, Perceptron, SGDClassifier],
|
||||
y: ndarray,
|
||||
i: int,
|
||||
) -> Union[
|
||||
Tuple[ndarray, ndarray, float64, None, int],
|
||||
Tuple[ndarray, ndarray, float64, ndarray, float64],
|
||||
]: ...
|
||||
) -> Union[Tuple[ndarray, ndarray, float64, None, int], Tuple[ndarray, ndarray, float64, ndarray, float64],]: ...
|
||||
def fit_binary(
|
||||
est: BaseEstimator,
|
||||
i: int,
|
||||
|
@ -325,9 +317,7 @@ class BaseSGDRegressor(RegressorMixin, BaseSGD):
|
|||
coef_init: None,
|
||||
intercept_init: None,
|
||||
) -> "SGDRegressor": ...
|
||||
def partial_fit(
|
||||
self, X: NDArray | ArrayLike, y: NDArray, sample_weight: ArrayLike | None = None
|
||||
) -> Any: ...
|
||||
def partial_fit(self, X: NDArray | ArrayLike, y: NDArray, sample_weight: ArrayLike | None = None) -> Any: ...
|
||||
def _fit(
|
||||
self,
|
||||
X: ndarray,
|
||||
|
@ -401,9 +391,7 @@ class SGDOneClassSVM(BaseSGD, OutlierMixin):
|
|||
shuffle: bool = True,
|
||||
verbose: int = 0,
|
||||
random_state: int | RandomState | None = None,
|
||||
learning_rate: Literal[
|
||||
"constant", "optimal", "invscaling", "adaptive"
|
||||
] = "optimal",
|
||||
learning_rate: Literal["constant", "optimal", "invscaling", "adaptive"] = "optimal",
|
||||
eta0: float = 0.0,
|
||||
power_t: float = 0.5,
|
||||
warm_start: bool = False,
|
||||
|
@ -431,9 +419,7 @@ class SGDOneClassSVM(BaseSGD, OutlierMixin):
|
|||
coef_init: None,
|
||||
offset_init: None,
|
||||
) -> "SGDOneClassSVM": ...
|
||||
def partial_fit(
|
||||
self, X: NDArray | ArrayLike, y=None, sample_weight: ArrayLike | None = None
|
||||
) -> Any: ...
|
||||
def partial_fit(self, X: NDArray | ArrayLike, y=None, sample_weight: ArrayLike | None = None) -> Any: ...
|
||||
def _fit(
|
||||
self,
|
||||
X: ndarray,
|
||||
|
|
|
@ -26,13 +26,9 @@ from typing import Tuple
|
|||
_EPSILON = ...
|
||||
|
||||
def _modified_weiszfeld_step(X: ndarray, x_old: ndarray) -> ndarray: ...
|
||||
def _spatial_median(
|
||||
X: ndarray, max_iter: int = 300, tol: float = 1.0e-3
|
||||
) -> Tuple[int, ndarray]: ...
|
||||
def _spatial_median(X: ndarray, max_iter: int = 300, tol: float = 1.0e-3) -> Tuple[int, ndarray]: ...
|
||||
def _breakdown_point(n_samples: int, n_subsamples: int) -> float: ...
|
||||
def _lstsq(
|
||||
X: ndarray, y: ndarray, indices: ndarray, fit_intercept: bool
|
||||
) -> ndarray: ...
|
||||
def _lstsq(X: ndarray, y: ndarray, indices: ndarray, fit_intercept: bool) -> ndarray: ...
|
||||
|
||||
class TheilSenRegressor(RegressorMixin, LinearModel):
|
||||
def __init__(
|
||||
|
@ -40,7 +36,7 @@ class TheilSenRegressor(RegressorMixin, LinearModel):
|
|||
*,
|
||||
fit_intercept: bool = True,
|
||||
copy_X: bool = True,
|
||||
max_subpopulation: int|float = 1e4,
|
||||
max_subpopulation: int | float = 1e4,
|
||||
n_subsamples: int | None = None,
|
||||
max_iter: int = 300,
|
||||
tol: float = 1.0e-3,
|
||||
|
|
|
@ -41,10 +41,6 @@ class Isomap(_ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
|||
) -> None: ...
|
||||
def _fit_transform(self, X: Union[ndarray, csr_matrix]) -> None: ...
|
||||
def reconstruction_error(self) -> float: ...
|
||||
def fit(
|
||||
self, X: ArrayLike | BallTree | KDTree | NearestNeighbors, y: None = None
|
||||
) -> "Isomap": ...
|
||||
def fit_transform(
|
||||
self, X: ArrayLike | BallTree | KDTree, y: None = None
|
||||
) -> ArrayLike: ...
|
||||
def fit(self, X: ArrayLike | BallTree | KDTree | NearestNeighbors, y: None = None) -> "Isomap": ...
|
||||
def fit_transform(self, X: ArrayLike | BallTree | KDTree, y: None = None) -> ArrayLike: ...
|
||||
def transform(self, X: ArrayLike) -> ArrayLike: ...
|
||||
|
|
|
@ -28,10 +28,7 @@ import scipy.sparse._csr
|
|||
from numpy.random import RandomState
|
||||
from scipy.sparse.linalg import LinearOperator
|
||||
|
||||
|
||||
def barycenter_weights(
|
||||
X: ArrayLike, Y: ArrayLike, indices: ArrayLike, reg: float = 1e-3
|
||||
) -> ArrayLike: ...
|
||||
def barycenter_weights(X: ArrayLike, Y: ArrayLike, indices: ArrayLike, reg: float = 1e-3) -> ArrayLike: ...
|
||||
def barycenter_kneighbors_graph(
|
||||
X: NearestNeighbors | ArrayLike,
|
||||
n_neighbors: int,
|
||||
|
|
|
@ -56,6 +56,4 @@ class MDS(BaseEstimator):
|
|||
): ...
|
||||
def _more_tags(self): ...
|
||||
def fit(self, X: ArrayLike, y=None, init: NDArray | None = None) -> Any: ...
|
||||
def fit_transform(
|
||||
self, X: ArrayLike, y=None, init: NDArray | None = None
|
||||
) -> NDArray: ...
|
||||
def fit_transform(self, X: ArrayLike, y=None, init: NDArray | None = None) -> NDArray: ...
|
||||
|
|
|
@ -32,9 +32,7 @@ from scipy.sparse._dia import dia_matrix
|
|||
|
||||
def _graph_connected_component(graph, node_id): ...
|
||||
def _graph_is_connected(graph: Union[csr_matrix, coo_matrix]) -> bool: ...
|
||||
def _set_diag(
|
||||
laplacian: coo_matrix, value: int, norm_laplacian: bool
|
||||
) -> Union[csr_matrix, dia_matrix]: ...
|
||||
def _set_diag(laplacian: coo_matrix, value: int, norm_laplacian: bool) -> Union[csr_matrix, dia_matrix]: ...
|
||||
def spectral_embedding(
|
||||
adjacency: ArrayLike,
|
||||
*,
|
||||
|
@ -51,9 +49,7 @@ class SpectralEmbedding(BaseEstimator):
|
|||
self,
|
||||
n_components: int = 2,
|
||||
*,
|
||||
affinity: Literal[
|
||||
"nearest_neighbors", "rbf", "precomputed", "precomputed_nearest_neighbors"
|
||||
]
|
||||
affinity: Literal["nearest_neighbors", "rbf", "precomputed", "precomputed_nearest_neighbors"]
|
||||
| Callable = "nearest_neighbors",
|
||||
gamma: float | None = None,
|
||||
random_state: int | RandomState | None = None,
|
||||
|
|
|
@ -111,7 +111,7 @@ class TSNE(BaseEstimator):
|
|||
method: str = "barnes_hut",
|
||||
angle: float = 0.5,
|
||||
n_jobs: int | None = None,
|
||||
square_distances: Literal[True]|str = "deprecated",
|
||||
square_distances: Literal[True] | str = "deprecated",
|
||||
) -> None: ...
|
||||
def _check_params_vs_input(self, X: ndarray) -> None: ...
|
||||
def _fit(self, X: ndarray, skip_num_points: int = 0) -> ndarray: ...
|
||||
|
|
|
@ -42,9 +42,7 @@ def _check_zero_division(zero_division: str) -> None: ...
|
|||
def _check_targets(
|
||||
y_true: Union[List[int], ndarray, Series], y_pred: Union[List[int], ndarray]
|
||||
) -> Tuple[str, ndarray, ndarray]: ...
|
||||
def _weighted_sum(
|
||||
sample_score: ndarray, sample_weight: Optional[ndarray], normalize: bool = False
|
||||
) -> float64: ...
|
||||
def _weighted_sum(sample_score: ndarray, sample_weight: Optional[ndarray], normalize: bool = False) -> float64: ...
|
||||
def accuracy_score(
|
||||
y_true: ArrayLike,
|
||||
y_pred: ArrayLike,
|
||||
|
@ -82,14 +80,11 @@ def jaccard_score(
|
|||
*,
|
||||
labels: ArrayLike | None = None,
|
||||
pos_label: str | int = 1,
|
||||
average: Literal["micro", "macro", "samples", "weighted", "binary"]
|
||||
| None = "binary",
|
||||
average: Literal["micro", "macro", "samples", "weighted", "binary"] | None = "binary",
|
||||
sample_weight: ArrayLike | None = None,
|
||||
zero_division: float | Literal["warn"] = "warn",
|
||||
) -> float | np.ndarray: ...
|
||||
def matthews_corrcoef(
|
||||
y_true: NDArray, y_pred: NDArray, *, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def matthews_corrcoef(y_true: NDArray, y_pred: NDArray, *, sample_weight: ArrayLike | None = None) -> float: ...
|
||||
def zero_one_loss(
|
||||
y_true: ArrayLike,
|
||||
y_pred: ArrayLike,
|
||||
|
@ -103,8 +98,7 @@ def f1_score(
|
|||
*,
|
||||
labels: ArrayLike | None = None,
|
||||
pos_label: str | int = 1,
|
||||
average: Literal["micro", "macro", "samples", "weighted", "binary"]
|
||||
| None = "binary",
|
||||
average: Literal["micro", "macro", "samples", "weighted", "binary"] | None = "binary",
|
||||
sample_weight: ArrayLike | None = None,
|
||||
zero_division: Literal["warn", 0, 1] = "warn",
|
||||
) -> float | NDArray: ...
|
||||
|
@ -115,8 +109,7 @@ def fbeta_score(
|
|||
beta: float,
|
||||
labels: ArrayLike | None = None,
|
||||
pos_label: str | int = 1,
|
||||
average: Literal["micro", "macro", "samples", "weighted", "binary"]
|
||||
| None = "binary",
|
||||
average: Literal["micro", "macro", "samples", "weighted", "binary"] | None = "binary",
|
||||
sample_weight: ArrayLike | None = None,
|
||||
zero_division: Literal["warn", 0, 1] = "warn",
|
||||
) -> float | NDArray: ...
|
||||
|
@ -155,8 +148,7 @@ def precision_score(
|
|||
*,
|
||||
labels: ArrayLike | None = None,
|
||||
pos_label: str | int = 1,
|
||||
average: Literal["micro", "macro", "samples", "weighted", "binary"]
|
||||
| None = "binary",
|
||||
average: Literal["micro", "macro", "samples", "weighted", "binary"] | None = "binary",
|
||||
sample_weight: ArrayLike | None = None,
|
||||
zero_division: Literal["warn", 0, 1] = "warn",
|
||||
) -> float | NDArray: ...
|
||||
|
@ -166,8 +158,7 @@ def recall_score(
|
|||
*,
|
||||
labels: ArrayLike | None = None,
|
||||
pos_label: str | int = 1,
|
||||
average: Literal["micro", "macro", "samples", "weighted", "binary"]
|
||||
| None = "binary",
|
||||
average: Literal["micro", "macro", "samples", "weighted", "binary"] | None = "binary",
|
||||
sample_weight: ArrayLike | None = None,
|
||||
zero_division: Literal["warn", 0, 1] = "warn",
|
||||
) -> float | NDArray: ...
|
||||
|
@ -189,9 +180,7 @@ def classification_report(
|
|||
output_dict: bool = False,
|
||||
zero_division: Literal["warn", 0, 1] = "warn",
|
||||
) -> str | dict: ...
|
||||
def hamming_loss(
|
||||
y_true: ArrayLike, y_pred: ArrayLike, *, sample_weight: ArrayLike | None = None
|
||||
) -> float | int: ...
|
||||
def hamming_loss(y_true: ArrayLike, y_pred: ArrayLike, *, sample_weight: ArrayLike | None = None) -> float | int: ...
|
||||
def log_loss(
|
||||
y_true: ArrayLike,
|
||||
y_pred: ArrayLike,
|
||||
|
|
|
@ -3,9 +3,7 @@ from numpy import bool_, int64, ndarray
|
|||
from sklearn.base import BaseEstimator
|
||||
from typing import Callable, Tuple, Union
|
||||
|
||||
def _check_classifier_response_method(
|
||||
estimator: BaseEstimator, response_method: str
|
||||
) -> Callable: ...
|
||||
def _check_classifier_response_method(estimator: BaseEstimator, response_method: str) -> Callable: ...
|
||||
def _get_response(
|
||||
X: ndarray, estimator: BaseEstimator, response_method: str, pos_label: None = None
|
||||
) -> Union[Tuple[ndarray, int64], Tuple[ndarray, bool_]]: ...
|
||||
|
|
|
@ -17,9 +17,7 @@ from sklearn.model_selection._search import RandomizedSearchCV
|
|||
from sklearn.svm._classes import SVC
|
||||
|
||||
class ConfusionMatrixDisplay:
|
||||
def __init__(
|
||||
self, confusion_matrix: NDArray, *, display_labels: NDArray | None = None
|
||||
) -> None: ...
|
||||
def __init__(self, confusion_matrix: NDArray, *, display_labels: NDArray | None = None) -> None: ...
|
||||
def plot(
|
||||
self,
|
||||
*,
|
||||
|
|
|
@ -16,7 +16,6 @@ from sklearn.pipeline import Pipeline
|
|||
from typing import Union, Sequence, Literal, Mapping
|
||||
from matplotlib.axes import Axes
|
||||
|
||||
|
||||
class DetCurveDisplay:
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -52,9 +51,7 @@ class DetCurveDisplay:
|
|||
ax: Axes | None = None,
|
||||
**kwargs,
|
||||
) -> DetCurveDisplay: ...
|
||||
def plot(
|
||||
self, ax: Axes | None = None, *, name: str | None = None, **kwargs
|
||||
) -> DetCurveDisplay: ...
|
||||
def plot(self, ax: Axes | None = None, *, name: str | None = None, **kwargs) -> DetCurveDisplay: ...
|
||||
|
||||
@deprecated(
|
||||
"Function plot_det_curve is deprecated in 1.0 and will be "
|
||||
|
|
|
@ -24,9 +24,7 @@ class PrecisionRecallDisplay:
|
|||
estimator_name: str | None = None,
|
||||
pos_label: str | int | None = None,
|
||||
) -> None: ...
|
||||
def plot(
|
||||
self, ax: Axes | None = None, *, name: str | None = None, **kwargs
|
||||
) -> PrecisionRecallDisplay: ...
|
||||
def plot(self, ax: Axes | None = None, *, name: str | None = None, **kwargs) -> PrecisionRecallDisplay: ...
|
||||
@classmethod
|
||||
def from_estimator(
|
||||
cls,
|
||||
|
|
|
@ -26,9 +26,7 @@ class RocCurveDisplay:
|
|||
estimator_name: str | None = None,
|
||||
pos_label: str | int | None = None,
|
||||
) -> None: ...
|
||||
def plot(
|
||||
self, ax: Axes | None = None, *, name: str | None = None, **kwargs
|
||||
) -> RocCurveDisplay: ...
|
||||
def plot(self, ax: Axes | None = None, *, name: str | None = None, **kwargs) -> RocCurveDisplay: ...
|
||||
@classmethod
|
||||
def from_estimator(
|
||||
cls,
|
||||
|
|
|
@ -53,9 +53,7 @@ def det_curve(
|
|||
pos_label: int | str | None = None,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
) -> tuple[np.ndarray, np.ndarray, np.ndarray]: ...
|
||||
def _binary_roc_auc_score(
|
||||
y_true: ndarray, y_score: ndarray, sample_weight: None = None, max_fpr: None = None
|
||||
) -> float64: ...
|
||||
def _binary_roc_auc_score(y_true: ndarray, y_score: ndarray, sample_weight: None = None, max_fpr: None = None) -> float64: ...
|
||||
def roc_auc_score(
|
||||
y_true: ArrayLike,
|
||||
y_score: ArrayLike,
|
||||
|
@ -98,12 +96,8 @@ def roc_curve(
|
|||
def label_ranking_average_precision_score(
|
||||
y_true: NDArray, y_score: NDArray, *, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def coverage_error(
|
||||
y_true: NDArray, y_score: NDArray, *, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def label_ranking_loss(
|
||||
y_true: NDArray, y_score: NDArray, *, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def coverage_error(y_true: NDArray, y_score: NDArray, *, sample_weight: ArrayLike | None = None) -> float: ...
|
||||
def label_ranking_loss(y_true: NDArray, y_score: NDArray, *, sample_weight: ArrayLike | None = None) -> float: ...
|
||||
def _dcg_sample_scores(y_true, y_score, k=None, log_base=2, ignore_ties=False): ...
|
||||
def _tie_averaged_dcg(y_true, y_score, discount_cumsum): ...
|
||||
def _check_dcg_target_type(y_true): ...
|
||||
|
|
|
@ -48,8 +48,7 @@ def mean_absolute_error(
|
|||
y_pred: ArrayLike,
|
||||
*,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
multioutput: Literal["raw_values", "uniform_average"]
|
||||
| ArrayLike = "uniform_average",
|
||||
multioutput: Literal["raw_values", "uniform_average"] | ArrayLike = "uniform_average",
|
||||
) -> float | np.ndarray: ...
|
||||
def mean_pinball_loss(
|
||||
y_true: ArrayLike,
|
||||
|
@ -57,24 +56,21 @@ def mean_pinball_loss(
|
|||
*,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
alpha: float = 0.5,
|
||||
multioutput: Literal["raw_values", "uniform_average"]
|
||||
| ArrayLike = "uniform_average",
|
||||
multioutput: Literal["raw_values", "uniform_average"] | ArrayLike = "uniform_average",
|
||||
) -> float | np.ndarray: ...
|
||||
def mean_absolute_percentage_error(
|
||||
y_true: ArrayLike,
|
||||
y_pred: ArrayLike,
|
||||
*,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
multioutput: Literal["raw_values", "uniform_average"]
|
||||
| ArrayLike = "uniform_average",
|
||||
multioutput: Literal["raw_values", "uniform_average"] | ArrayLike = "uniform_average",
|
||||
) -> float | np.ndarray: ...
|
||||
def mean_squared_error(
|
||||
y_true: ArrayLike,
|
||||
y_pred: ArrayLike,
|
||||
*,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
multioutput: Literal["raw_values", "uniform_average"]
|
||||
| ArrayLike = "uniform_average",
|
||||
multioutput: Literal["raw_values", "uniform_average"] | ArrayLike = "uniform_average",
|
||||
squared: bool = True,
|
||||
) -> float | np.ndarray: ...
|
||||
def mean_squared_log_error(
|
||||
|
@ -82,16 +78,14 @@ def mean_squared_log_error(
|
|||
y_pred: ArrayLike,
|
||||
*,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
multioutput: Literal["raw_values", "uniform_average"]
|
||||
| ArrayLike = "uniform_average",
|
||||
multioutput: Literal["raw_values", "uniform_average"] | ArrayLike = "uniform_average",
|
||||
squared: bool = True,
|
||||
) -> float | np.ndarray: ...
|
||||
def median_absolute_error(
|
||||
y_true: ArrayLike | tuple[int, int],
|
||||
y_pred: ArrayLike | tuple[int, int],
|
||||
*,
|
||||
multioutput: Literal["raw_values", "uniform_average"]
|
||||
| ArrayLike = "uniform_average",
|
||||
multioutput: Literal["raw_values", "uniform_average"] | ArrayLike = "uniform_average",
|
||||
sample_weight: ArrayLike | None = None,
|
||||
) -> float | np.ndarray: ...
|
||||
def _assemble_r2_explained_variance(
|
||||
|
@ -106,8 +100,7 @@ def explained_variance_score(
|
|||
y_pred: ArrayLike,
|
||||
*,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
multioutput: Literal["raw_values", "uniform_average", "variance_weighted"]
|
||||
| ArrayLike = "uniform_average",
|
||||
multioutput: Literal["raw_values", "uniform_average", "variance_weighted"] | ArrayLike = "uniform_average",
|
||||
force_finite: bool = True,
|
||||
) -> float | np.ndarray: ...
|
||||
def r2_score(
|
||||
|
@ -115,9 +108,7 @@ def r2_score(
|
|||
y_pred: ArrayLike,
|
||||
*,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
multioutput: Literal["raw_values", "uniform_average", "variance_weighted"]
|
||||
| ArrayLike
|
||||
| None = "uniform_average",
|
||||
multioutput: Literal["raw_values", "uniform_average", "variance_weighted"] | ArrayLike | None = "uniform_average",
|
||||
force_finite: bool = True,
|
||||
) -> float | np.ndarray: ...
|
||||
def max_error(y_true: ArrayLike, y_pred: ArrayLike) -> float: ...
|
||||
|
@ -129,12 +120,8 @@ def mean_tweedie_deviance(
|
|||
sample_weight: ArrayLike | None = None,
|
||||
power: float = 0,
|
||||
) -> float: ...
|
||||
def mean_poisson_deviance(
|
||||
y_true: ArrayLike, y_pred: ArrayLike, *, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def mean_gamma_deviance(
|
||||
y_true: ArrayLike, y_pred: ArrayLike, *, sample_weight: ArrayLike | None = None
|
||||
) -> float: ...
|
||||
def mean_poisson_deviance(y_true: ArrayLike, y_pred: ArrayLike, *, sample_weight: ArrayLike | None = None) -> float: ...
|
||||
def mean_gamma_deviance(y_true: ArrayLike, y_pred: ArrayLike, *, sample_weight: ArrayLike | None = None) -> float: ...
|
||||
def d2_tweedie_score(
|
||||
y_true: ArrayLike,
|
||||
y_pred: ArrayLike,
|
||||
|
@ -148,14 +135,12 @@ def d2_pinball_score(
|
|||
*,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
alpha: float = 0.5,
|
||||
multioutput: Literal["raw_values", "uniform_average"]
|
||||
| ArrayLike = "uniform_average",
|
||||
multioutput: Literal["raw_values", "uniform_average"] | ArrayLike = "uniform_average",
|
||||
) -> float | np.ndarray: ...
|
||||
def d2_absolute_error_score(
|
||||
y_true: ArrayLike,
|
||||
y_pred: ArrayLike,
|
||||
*,
|
||||
sample_weight: ArrayLike | None = None,
|
||||
multioutput: Literal["raw_values", "uniform_average"]
|
||||
| ArrayLike = "uniform_average",
|
||||
multioutput: Literal["raw_values", "uniform_average"] | ArrayLike = "uniform_average",
|
||||
) -> float | np.ndarray: ...
|
||||
|
|
|
@ -66,9 +66,7 @@ def _cached_call(
|
|||
|
||||
class _MultimetricScorer:
|
||||
def __init__(self, **scorers: Mapping) -> None: ...
|
||||
def __call__(
|
||||
self, estimator: BaseEstimator, *args, **kwargs
|
||||
) -> Dict[str, float64]: ...
|
||||
def __call__(self, estimator: BaseEstimator, *args, **kwargs) -> Dict[str, float64]: ...
|
||||
def _use_cache(self, estimator: BaseEstimator) -> bool: ...
|
||||
|
||||
class _BaseScorer:
|
||||
|
|
Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше
Загрузка…
Ссылка в новой задаче