зеркало из https://github.com/microsoft/qlib.git
Bug fix for Rank and WMA operators (#1228)
* bug fix: 1) 100 should be used to scale down percentileofscore return to 0-1, not length of array; 2) for (linear) weighted MA(n), weight should be n, n-1, ..., 1 instead of n-1, ..., 0 * use native pandas fucntion for rank * remove useless import * require pandas 1.4+ * rank for py37+pandas 1.3.5 compatibility * lint improvement * lint black fix * use hasattr instead of version to check whether rolling.rank is implemented
This commit is contained in:
Родитель
ff2154c618
Коммит
4001a5d157
|
@ -34,8 +34,6 @@ np.seterr(invalid="ignore")
|
|||
|
||||
|
||||
#################### Element-Wise Operator ####################
|
||||
|
||||
|
||||
class ElemOperator(ExpressionOps):
|
||||
"""Element-wise Operator
|
||||
|
||||
|
@ -216,9 +214,7 @@ class Not(NpElemOperator):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
feature_left : Expression
|
||||
feature instance
|
||||
feature_right : Expression
|
||||
feature : Expression
|
||||
feature instance
|
||||
|
||||
Returns
|
||||
|
@ -241,8 +237,6 @@ class PairOperator(ExpressionOps):
|
|||
feature instance or numeric value
|
||||
feature_right : Expression
|
||||
feature instance or numeric value
|
||||
func : str
|
||||
operator function
|
||||
|
||||
Returns
|
||||
----------
|
||||
|
@ -1155,9 +1149,13 @@ class Rank(Rolling):
|
|||
def __init__(self, feature, N):
|
||||
super(Rank, self).__init__(feature, N, "rank")
|
||||
|
||||
# for compatiblity of python 3.7, which doesn't support pandas 1.4.0+ which implements Rolling.rank
|
||||
def _load_internal(self, instrument, start_index, end_index, *args):
|
||||
series = self.feature.load(instrument, start_index, end_index, *args)
|
||||
# TODO: implement in Cython
|
||||
|
||||
rolling_or_expending = series.expanding(min_periods=1) if self.N == 0 else series.rolling(self.N, min_periods=1)
|
||||
if hasattr(rolling_or_expending, "rank"):
|
||||
return rolling_or_expending.rank(pct=True)
|
||||
|
||||
def rank(x):
|
||||
if np.isnan(x[-1]):
|
||||
|
@ -1165,13 +1163,9 @@ class Rank(Rolling):
|
|||
x1 = x[~np.isnan(x)]
|
||||
if x1.shape[0] == 0:
|
||||
return np.nan
|
||||
return percentileofscore(x1, x1[-1]) / len(x1)
|
||||
return percentileofscore(x1, x1[-1]) / 100
|
||||
|
||||
if self.N == 0:
|
||||
series = series.expanding(min_periods=1).apply(rank, raw=True)
|
||||
else:
|
||||
series = series.rolling(self.N, min_periods=1).apply(rank, raw=True)
|
||||
return series
|
||||
return rolling_or_expending.apply(rank, raw=True)
|
||||
|
||||
|
||||
class Count(Rolling):
|
||||
|
@ -1341,7 +1335,7 @@ class WMA(Rolling):
|
|||
# TODO: implement in Cython
|
||||
|
||||
def weighted_mean(x):
|
||||
w = np.arange(len(x))
|
||||
w = np.arange(len(x)) + 1
|
||||
w = w / w.sum()
|
||||
return np.nanmean(w * x)
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче