зеркало из https://github.com/microsoft/qlib.git
Optimize KnowledgeBase to complete workflow (#1598)
* optimize KnowledgeBase to complete workflow; * Update Knowledge methods of handle data IO; * Update task to handle multi recorders; * Integrate Knowledge to workflow; * optimize KnowledgeBase to complete workflow * Update TrainTask & AnalyseTask's recorder method; * Update SummarizeTask; * Update Workflow & Topic prompt;
This commit is contained in:
Родитель
1c9841b15e
Коммит
8c1905d1d7
|
@ -7,7 +7,7 @@ import yaml
|
|||
from qlib.workflow import R
|
||||
from qlib.finco.log import FinCoLog
|
||||
from qlib.finco.llm import APIBackend
|
||||
from qlib.finco.utils import similarity, random_string
|
||||
from qlib.finco.utils import similarity, random_string, SingletonBaseClass
|
||||
|
||||
logger = FinCoLog()
|
||||
|
||||
|
@ -140,8 +140,10 @@ class Knowledge:
|
|||
Return
|
||||
------
|
||||
"""
|
||||
knowledge = []
|
||||
for storage in self.storages:
|
||||
self.knowledge.extend(storage.documents)
|
||||
knowledge.extend(storage.documents)
|
||||
self.knowledge = knowledge
|
||||
|
||||
@classmethod
|
||||
def load(cls, path: Union[str, Path]):
|
||||
|
@ -212,12 +214,16 @@ class PracticeKnowledge(Knowledge):
|
|||
|
||||
self.summarize()
|
||||
|
||||
def add(self, docs: List):
|
||||
storage = YamlStorage(path=self.workdir.joinpath(self.name).joinpath(YamlStorage.DEFAULT_NAME))
|
||||
def add(self, docs: List, storage_name: str = YamlStorage.DEFAULT_NAME):
|
||||
storage = self.get_storage(storage_name)
|
||||
if storage is None:
|
||||
storage = YamlStorage(path=self.workdir.joinpath(self.name).joinpath(storage_name))
|
||||
storage.add(documents=docs)
|
||||
self.storages.append(storage)
|
||||
self.summarize()
|
||||
else:
|
||||
storage.add(documents=docs)
|
||||
|
||||
self.summarize()
|
||||
self.save()
|
||||
|
||||
|
||||
|
@ -232,18 +238,27 @@ class FinanceKnowledge(Knowledge):
|
|||
storage = self.get_storage(YamlStorage.DEFAULT_NAME)
|
||||
if len(storage.documents) == 0:
|
||||
docs = self.read_files_in_directory(self.workdir.joinpath(self.name))
|
||||
docs.extend([
|
||||
{"content": "[Success]: XXXX, the results looks reasonable # Keywords: supervised learning, data"},
|
||||
{"content": "[Fail]: XXXX, it raise memory error due to YYYYY "
|
||||
"# Keywords: supervised learning, data"}])
|
||||
self.add(docs)
|
||||
|
||||
def add(self, docs: List):
|
||||
storage = YamlStorage(path=self.workdir.joinpath(self.name).joinpath(YamlStorage.DEFAULT_NAME))
|
||||
storage.add(documents=docs)
|
||||
self.storages.append(storage)
|
||||
self.summarize()
|
||||
|
||||
def add(self, docs: List, storage_name: str = YamlStorage.DEFAULT_NAME):
|
||||
storage = self.get_storage(storage_name)
|
||||
if storage is None:
|
||||
storage = YamlStorage(path=self.workdir.joinpath(self.name).joinpath(storage_name))
|
||||
storage.add(documents=docs)
|
||||
self.storages.append(storage)
|
||||
else:
|
||||
storage.add(documents=docs)
|
||||
|
||||
self.summarize()
|
||||
self.save()
|
||||
|
||||
@staticmethod
|
||||
def read_files_in_directory(directory):
|
||||
def read_files_in_directory(directory) -> List:
|
||||
"""
|
||||
read all .txt files under directory
|
||||
"""
|
||||
|
@ -265,12 +280,24 @@ class ExecuteKnowledge(Knowledge):
|
|||
super().__init__(storages=storages, name="execute")
|
||||
self.summarize()
|
||||
|
||||
def add(self, docs: List):
|
||||
storage = YamlStorage(path=self.workdir.joinpath(YamlStorage.DEFAULT_NAME))
|
||||
storage.add(documents=docs)
|
||||
self.storages.append(storage)
|
||||
storage = self.get_storage(YamlStorage.DEFAULT_NAME)
|
||||
if len(storage.documents) == 0:
|
||||
docs = [{"content": "[Success]: XXXX, the results looks reasonable # Keywords: supervised learning, data"},
|
||||
{"content": "[Fail]: XXXX, it raise memory error due to YYYYY "
|
||||
"# Keywords: supervised learning, data"}]
|
||||
self.add(docs)
|
||||
self.summarize()
|
||||
|
||||
def add(self, docs: List, storage_name: str = YamlStorage.DEFAULT_NAME):
|
||||
storage = self.get_storage(storage_name)
|
||||
if storage is None:
|
||||
storage = YamlStorage(path=self.workdir.joinpath(self.name).joinpath(storage_name))
|
||||
storage.add(documents=docs)
|
||||
self.storages.append(storage)
|
||||
else:
|
||||
storage.add(documents=docs)
|
||||
|
||||
self.summarize()
|
||||
self.save()
|
||||
|
||||
|
||||
|
@ -285,17 +312,26 @@ class InfrastructureKnowledge(Knowledge):
|
|||
storage = self.get_storage(YamlStorage.DEFAULT_NAME)
|
||||
if len(storage.documents) == 0:
|
||||
docs = self.get_functions_and_docstrings(Path(__file__).parent.parent.parent)
|
||||
docs.extend([{"docstring": "All the models can be import from `qlib.contrib.models` "
|
||||
"# Keywords: supervised learning"},
|
||||
{"docstring": "The API to run rolling models can be found in … #Keywords: control"},
|
||||
{"docstring": "Here are a list of Qlib’s available analyzers. #KEYWORDS: analysis"}])
|
||||
self.add(docs)
|
||||
|
||||
def add(self, docs: List):
|
||||
storage = YamlStorage(path=self.workdir.joinpath(self.name).joinpath(YamlStorage.DEFAULT_NAME))
|
||||
storage.add(documents=docs)
|
||||
self.storages.append(storage)
|
||||
self.summarize()
|
||||
|
||||
def add(self, docs: List, storage_name: str = YamlStorage.DEFAULT_NAME):
|
||||
storage = self.get_storage(storage_name)
|
||||
if storage is None:
|
||||
storage = YamlStorage(path=self.workdir.joinpath(self.name).joinpath(storage_name))
|
||||
storage.add(documents=docs)
|
||||
self.storages.append(storage)
|
||||
else:
|
||||
storage.add(documents=docs)
|
||||
|
||||
self.summarize()
|
||||
self.save()
|
||||
|
||||
def get_functions_and_docstrings(self, directory):
|
||||
def get_functions_and_docstrings(self, directory) -> List:
|
||||
"""
|
||||
get all method and docstring in .py files under directory
|
||||
|
||||
|
@ -350,15 +386,16 @@ class Topic:
|
|||
self.logger = FinCoLog()
|
||||
|
||||
def summarize(self, docs: list):
|
||||
self.logger.info(f"Summarize topic: \nname: {self.name}\ndescribe: {self.describe.module}")
|
||||
self.logger.info(f"Summarize Topic \nname: {self.name}\ndescribe: {self.describe.module}")
|
||||
prompt_workflow_selection = self.describe.render(docs=docs)
|
||||
response = APIBackend().build_messages_and_create_chat_completion(user_prompt=prompt_workflow_selection)
|
||||
|
||||
self.knowledge = response
|
||||
self.docs = docs
|
||||
self.logger.info(f"Summary of {self.name}:\n{self.knowledge}")
|
||||
|
||||
|
||||
class KnowledgeBase:
|
||||
class KnowledgeBase(SingletonBaseClass):
|
||||
"""
|
||||
Load knowledge, offer brief information of knowledge and common handle interfaces
|
||||
"""
|
||||
|
@ -461,8 +498,12 @@ class KnowledgeBase:
|
|||
similar_n_docs = [knowledge[i] for i in similar_n_indexes]
|
||||
|
||||
prompt = Template(
|
||||
"""find the most relevant doc with this query: '{{content}}' from docs='{{docs}}'.
|
||||
Just return the most relevant item I provided, no more explain. For example: {'function': 'config.resolve_path', 'docstring': None}"""
|
||||
"""find the most relevant doc with this query: '{{content}}'
|
||||
from docs='{{docs}}. Just return the most relevant item I provided, no more explain.
|
||||
For example:
|
||||
user: find the most relevant doc with this query: ab \n from docs = {abc, xyz, lmn}.
|
||||
response: abc
|
||||
"""
|
||||
)
|
||||
prompt_workflow_selection = prompt.render(content=content, docs=similar_n_docs)
|
||||
response = APIBackend().build_messages_and_create_chat_completion(
|
||||
|
@ -470,3 +511,7 @@ class KnowledgeBase:
|
|||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
# perhaps init KnowledgeBase in other place
|
||||
KnowledgeBase(workdir=Path.cwd().joinpath('knowledge'))
|
||||
|
|
|
@ -993,7 +993,7 @@ SummarizeTask_context_user : |-
|
|||
Here is my information: '{{key}}:{{value}}'
|
||||
|
||||
SummarizeTask_metrics_system : |-
|
||||
Your purpose is to summarize the information by metrics in markdown format.
|
||||
Your purpose is to summarize the information by metrics in markdown format. If possible, try to display data in percentages.
|
||||
|
||||
SummarizeTask_metrics_user : |-
|
||||
Here is my information: '{{information}}'
|
||||
|
@ -1012,7 +1012,10 @@ LearnManager_user : |-
|
|||
you will adjust {{task}}'s system prompt to:
|
||||
|
||||
Topic_IC : |-
|
||||
Summarize the influence of parameters on IC: {{docs}}
|
||||
Summarize the influence of parameters on IC: {{docs}}. (Example response: Max draw-down become larger over time)
|
||||
|
||||
Topic_MaxDropDown : |-
|
||||
Summarize the influence of parameters on max dropdown: {{docs}}
|
||||
Summarize the influence of parameters on max dropdown: {{docs}}. (Example response: Max draw-down become larger over time)
|
||||
|
||||
Topic_RollingModel : |-
|
||||
What conclusion can you draw from: {{docs}}. Answer questions as concisely as possible. (Example response: rolling model is good at making the Max draw-down smaller.)
|
|
@ -18,7 +18,7 @@ from qlib.contrib.analyzer import HFAnalyzer, SignalAnalyzer
|
|||
from qlib.workflow import R
|
||||
from qlib.finco.log import FinCoLog, LogColors
|
||||
from qlib.finco.conf import Config
|
||||
from qlib.finco.knowledge import KnowledgeBase, Topic
|
||||
from qlib.finco.knowledge import KnowledgeBase
|
||||
|
||||
from qlib.finco.context import Design, Exp, WorkflowContextManager
|
||||
|
||||
|
@ -401,6 +401,8 @@ class TrainTask(Task):
|
|||
if confirm is False:
|
||||
return []
|
||||
|
||||
# todo: change global R.uri & experiment name
|
||||
R.set_uri(Path(workspace).joinpath("mlruns").as_uri())
|
||||
if not self._rolling:
|
||||
command = ["qrun", str(workflow_path)]
|
||||
try:
|
||||
|
@ -415,10 +417,11 @@ class TrainTask(Task):
|
|||
encoding="utf8",
|
||||
cwd=str(workspace),
|
||||
)
|
||||
exp = R.get_exp(experiment_name="finCo")
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
print(f"An error occurred while running the subprocess: {e.stderr} {e.stdout}")
|
||||
real_error = e.stderr + e.stdout
|
||||
real_error = e.stderr+e.stdout
|
||||
KnowledgeBase().execute_knowledge.add([real_error])
|
||||
|
||||
if "data" in e.stdout.lower() or "handler" in e.stdout.lower():
|
||||
|
@ -451,17 +454,27 @@ class TrainTask(Task):
|
|||
# Run the command and capture the output
|
||||
workspace = self._context_manager.struct_context.workspace
|
||||
subprocess.run(
|
||||
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True, text=True, cwd=str(workspace)
|
||||
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True,
|
||||
text=True, encoding="utf8", cwd=str(workspace)
|
||||
)
|
||||
# todo: dont manage record by id, experiment_id=2 doesnt contains metrics
|
||||
exp = R.get_exp(experiment_id="3")
|
||||
|
||||
else:
|
||||
command = f"python -m qlib.contrib.rolling ddgda --conf_path {workflow_path} run"
|
||||
# Run the command and capture the output
|
||||
workspace = self._context_manager.struct_context.workspace
|
||||
subprocess.run(
|
||||
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True, text=True, cwd=str(workspace)
|
||||
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True,
|
||||
encoding="utf8", text=True, cwd=str(workspace)
|
||||
)
|
||||
exp = R.get_exp(experiment_id="3")
|
||||
|
||||
return [AnalysisTask()]
|
||||
# first recorder is the latest
|
||||
recorder = exp.list_recorders(rtype=exp.RT_L)[0]
|
||||
self._context_manager.set_context(f"experiment_{self._experiment_index}_recorder", recorder)
|
||||
|
||||
return []
|
||||
|
||||
def summarize(self):
|
||||
if self._output is not None:
|
||||
|
@ -520,27 +533,22 @@ class AnalysisTask(Task):
|
|||
|
||||
if isinstance(analysers, list) and len(analysers):
|
||||
self.logger.info(f"selected analysers: {analysers}", plain=True)
|
||||
experiment_count = self._context_manager.get_context("experiment_count")
|
||||
|
||||
workflow_config = (
|
||||
self._context_manager.get_context("workflow_config")
|
||||
if self._context_manager.get_context("workflow_config")
|
||||
else "workflow_config.yaml"
|
||||
)
|
||||
workspace = self._context_manager.get_context("workspace")
|
||||
|
||||
# todo: analysis multi experiment(get recorder by id)
|
||||
experiment_name = "workflow"
|
||||
R.set_uri(Path.joinpath(workspace, "mlruns").as_uri())
|
||||
for exp_id in range(1, experiment_count + 1):
|
||||
recorder = self._context_manager.get_context(f"experiment_{exp_id}_recorder")
|
||||
|
||||
tasks = []
|
||||
for analyser in analysers:
|
||||
if analyser in self.__ANALYZERS_PROJECT.keys():
|
||||
tasks.append(
|
||||
self.__ANALYZERS_PROJECT.get(analyser)(
|
||||
recorder=R.get_recorder(experiment_name=experiment_name), output_dir=workspace
|
||||
recorder=recorder, output_dir=workspace
|
||||
)
|
||||
)
|
||||
|
||||
# todo: set by experiment
|
||||
for task in tasks:
|
||||
resp = task.analyse()
|
||||
self._context_manager.set_context(resp, task.__class__.__doc__)
|
||||
|
@ -1100,7 +1108,7 @@ class CodeDumpTask(ActionTask):
|
|||
|
||||
|
||||
class SummarizeTask(Task):
|
||||
__DEFAULT_SUMMARIZE_CONTEXT = ["workflow_yaml", "metrics"]
|
||||
__DEFAULT_SUMMARIZE_CONTEXT = ["metrics"]
|
||||
|
||||
# TODO: 2048 is close to exceed GPT token limit
|
||||
__MAX_LENGTH_OF_FILE = 2048
|
||||
|
@ -1129,27 +1137,31 @@ class SummarizeTask(Task):
|
|||
def execute(self) -> Any:
|
||||
workspace = self._context_manager.get_context("workspace")
|
||||
user_prompt = self._context_manager.get_context("user_prompt")
|
||||
workflow_yaml = self._context_manager.get_context("workflow_yaml")
|
||||
|
||||
file_info = self.get_info_from_file(workspace)
|
||||
context_info = self.get_info_from_context() # too long context make response unstable.
|
||||
|
||||
# todo: experiments perhaps have the same name, summarize experiment by loop
|
||||
record_info = self.get_info_from_recorder(workspace, "workflow")
|
||||
figure_path = self.get_figure_path(workspace)
|
||||
|
||||
information = context_info + file_info + record_info
|
||||
|
||||
def _get_value_from_info(info: list, k: str):
|
||||
for i in information:
|
||||
if k in i.keys():
|
||||
return i.get(k)
|
||||
return ""
|
||||
|
||||
# todo: remove 'be' after test
|
||||
be = APIBackend()
|
||||
be.debug_mode = False
|
||||
|
||||
def _get_value_from_info(info: list, k: str):
|
||||
for i in info:
|
||||
if k in i.keys():
|
||||
return i.get(k)
|
||||
return ""
|
||||
|
||||
experiment_count = self._context_manager.get_context("experiment_count")
|
||||
for exp_id in range(1, experiment_count + 1):
|
||||
recorder = self._context_manager.get_context(f"experiment_{exp_id}_recorder")
|
||||
reason = self._context_manager.get_context(f"experiment_{exp_id}_config_finetune_reason")
|
||||
workflow_yaml = self._context_manager.get_context(f"workflow_{exp_id}_yaml")
|
||||
record_info = [{"metrics": recorder.list_metrics()}]
|
||||
|
||||
information = context_info + file_info + record_info
|
||||
|
||||
context_summary = {}
|
||||
for key in self.__DEFAULT_SUMMARIZE_CONTEXT:
|
||||
prompt_workflow_selection = self.summarize_context_user.render(
|
||||
|
@ -1160,7 +1172,6 @@ class SummarizeTask(Task):
|
|||
)
|
||||
context_summary.update({key: response})
|
||||
|
||||
recorder = R.get_recorder(experiment_name="workflow")
|
||||
recorder.save_objects(context_summary=context_summary)
|
||||
|
||||
prompt_workflow_selection = self.summarize_metrics_user.render(
|
||||
|
@ -1170,22 +1181,17 @@ class SummarizeTask(Task):
|
|||
user_prompt=prompt_workflow_selection, system_prompt=self.summarize_metrics_system.render()
|
||||
)
|
||||
|
||||
KnowledgeBase().practice_knowledge.add([{"user_intention": user_prompt, "experiment_id": exp_id,
|
||||
"workflow": workflow_yaml, "reason": reason,
|
||||
"experiment_metrics": metrics_response}])
|
||||
|
||||
prompt_workflow_selection = self.user.render(
|
||||
information=file_info + [{"metrics": metrics_response}], figure_path=figure_path, user_prompt=user_prompt
|
||||
information=file_info + KnowledgeBase().practice_knowledge.knowledge[-2:],
|
||||
figure_path=figure_path, user_prompt=user_prompt
|
||||
)
|
||||
response = be.build_messages_and_create_chat_completion(
|
||||
user_prompt=prompt_workflow_selection, system_prompt=self.system.render()
|
||||
)
|
||||
|
||||
KnowledgeBase().practice_knowledge.add(
|
||||
[{"user_intention": user_prompt, "experiment_metrics": metrics_response}]
|
||||
)
|
||||
|
||||
# notes: summarize after all experiment added to KnowledgeBase
|
||||
topic = Topic(name="rollingModel", describe=Template("What conclusion can you draw"))
|
||||
topic.summarize(KnowledgeBase().practice_knowledge.knowledge)
|
||||
self.logger.info(f"Summary of topic: {topic.name}: {topic.knowledge}")
|
||||
|
||||
self._context_manager.set_context("summary", response)
|
||||
self.save_markdown(content=response, path=workspace)
|
||||
self.logger.info(f"Report has saved to {self.__DEFAULT_REPORT_NAME}", title="End")
|
||||
|
@ -1209,7 +1215,8 @@ class SummarizeTask(Task):
|
|||
result = []
|
||||
for file in file_list:
|
||||
postfix = file.name.split(".")[-1]
|
||||
if postfix in ["py", "log", "yaml"]:
|
||||
# todo: filter file info more reasonable
|
||||
if postfix in ["py", "log", "yaml"] and file.name.startswith("experiment"):
|
||||
with open(file) as f:
|
||||
content = f.read()
|
||||
self.logger.info(f"file to summarize: {file}", plain=True)
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
import sys
|
||||
import shutil
|
||||
from typing import List
|
||||
|
||||
from pathlib import Path
|
||||
from qlib.finco.task import HighLevelPlanTask, SummarizeTask
|
||||
from qlib.finco.task import HighLevelPlanTask, SummarizeTask, AnalysisTask
|
||||
from qlib.finco.prompt_template import PromptTemplate, Template
|
||||
from qlib.finco.log import FinCoLog, LogColors
|
||||
from qlib.finco.llm import APIBackend
|
||||
|
@ -52,7 +53,7 @@ class WorkflowManager:
|
|||
|
||||
self.prompt_template = PromptTemplate()
|
||||
self.context = WorkflowContextManager(workspace=self._workspace)
|
||||
self.default_user_prompt = "Please help me build a low turnover strategy that focus more on longterm return in China A csi300. Please help to use lightgbm model."
|
||||
self.default_user_prompt = "build an A-share stock market daily portfolio in quantitative investment and minimize the maximum drawdown."
|
||||
|
||||
def _confirm_and_rm(self):
|
||||
# if workspace exists, please confirm and remove it. Otherwise exit.
|
||||
|
@ -114,7 +115,7 @@ class WorkflowManager:
|
|||
self.logger.info(f"user_prompt: {self.get_context().get_context('user_prompt')}", title="Start")
|
||||
|
||||
# NOTE: list may not be enough for general task list
|
||||
task_list = [HighLevelPlanTask(), SummarizeTask()]
|
||||
task_list = [HighLevelPlanTask(), AnalysisTask(), SummarizeTask()]
|
||||
task_finished = []
|
||||
while len(task_list):
|
||||
task_list_info = [str(task) for task in task_list]
|
||||
|
@ -143,7 +144,7 @@ class WorkflowManager:
|
|||
|
||||
|
||||
class LearnManager:
|
||||
__DEFAULT_TOPICS = ["IC", "MaxDropDown"]
|
||||
__DEFAULT_TOPICS = ["IC", "MaxDropDown", "RollingModel"]
|
||||
|
||||
def __init__(self):
|
||||
self.epoch = 0
|
||||
|
@ -152,9 +153,7 @@ class LearnManager:
|
|||
self.topics = [
|
||||
Topic(name=topic, describe=self.wm.prompt_template.get(f"Topic_{topic}")) for topic in self.__DEFAULT_TOPICS
|
||||
]
|
||||
self.knowledge_base = KnowledgeBase(workdir=Path.cwd().joinpath("knowledge"))
|
||||
self.knowledge_base.execute_knowledge.add([])
|
||||
self.knowledge_base.query(knowledge_type="infrastructure", content="resolve_path")
|
||||
self.knowledge_base = KnowledgeBase()
|
||||
|
||||
def run(self, prompt):
|
||||
# todo: add early stop condition
|
||||
|
@ -180,7 +179,8 @@ class LearnManager:
|
|||
user_prompt = self.wm.context.get_context("user_prompt")
|
||||
summary = self.wm.context.get_context("summary")
|
||||
|
||||
[topic.summarize(self.knowledge_base.get_knowledge()) for topic in self.topics]
|
||||
[topic.summarize(self.knowledge_base.practice_knowledge.knowledge[-2:]) for topic in self.topics]
|
||||
[self.knowledge_base.practice_knowledge.add([{"practice_knowledge": topic.knowledge}]) for topic in self.topics]
|
||||
knowledge_of_topics = [{topic.name: topic.knowledge} for topic in self.topics]
|
||||
|
||||
for task in task_finished:
|
||||
|
|
Загрузка…
Ссылка в новой задаче