зеркало из https://github.com/microsoft/qlib.git
fix break img
This commit is contained in:
Родитель
9e635168c0
Коммит
b9fc79b4ba
16
README.md
16
README.md
|
@ -309,19 +309,19 @@ Qlib provides a tool named `qrun` to run the whole workflow automatically (inclu
|
||||||
2. Graphical Reports Analysis: Run `examples/workflow_by_code.ipynb` with `jupyter notebook` to get graphical reports
|
2. Graphical Reports Analysis: Run `examples/workflow_by_code.ipynb` with `jupyter notebook` to get graphical reports
|
||||||
- Forecasting signal (model prediction) analysis
|
- Forecasting signal (model prediction) analysis
|
||||||
- Cumulative Return of groups
|
- Cumulative Return of groups
|
||||||
![Cumulative Return](http://fintech.msra.cn/images_v070/analysis/analysis_model_cumulative_return.png?v=0.1)
|
![Cumulative Return](https://github.com/microsoft/qlib/blob/main/docs/_static/img/analysis/analysis_model_cumulative_return.png)
|
||||||
- Return distribution
|
- Return distribution
|
||||||
![long_short](http://fintech.msra.cn/images_v070/analysis/analysis_model_long_short.png?v=0.1)
|
![long_short](https://github.com/microsoft/qlib/blob/main/docs/_static/img/analysis/analysis_model_long_short.png)
|
||||||
- Information Coefficient (IC)
|
- Information Coefficient (IC)
|
||||||
![Information Coefficient](http://fintech.msra.cn/images_v070/analysis/analysis_model_IC.png?v=0.1)
|
![Information Coefficient](https://github.com/microsoft/qlib/blob/main/docs/_static/img/analysis/analysis_model_IC.png)
|
||||||
![Monthly IC](http://fintech.msra.cn/images_v070/analysis/analysis_model_monthly_IC.png?v=0.1)
|
![Monthly IC](https://github.com/microsoft/qlib/blob/main/docs/_static/img/analysis/analysis_model_monthly_IC.png)
|
||||||
![IC](http://fintech.msra.cn/images_v070/analysis/analysis_model_NDQ.png?v=0.1)
|
![IC](https://github.com/microsoft/qlib/blob/main/docs/_static/img/analysis/analysis_model_NDQ.png)
|
||||||
- Auto Correlation of forecasting signal (model prediction)
|
- Auto Correlation of forecasting signal (model prediction)
|
||||||
![Auto Correlation](http://fintech.msra.cn/images_v070/analysis/analysis_model_auto_correlation.png?v=0.1)
|
![Auto Correlation](https://github.com/microsoft/qlib/blob/main/docs/_static/img/analysis/analysis_model_auto_correlation.png)
|
||||||
|
|
||||||
- Portfolio analysis
|
- Portfolio analysis
|
||||||
- Backtest return
|
- Backtest return
|
||||||
![Report](http://fintech.msra.cn/images_v070/analysis/report.png?v=0.1)
|
![Report](https://github.com/microsoft/qlib/blob/main/docs/_static/img/analysis/report.png)
|
||||||
<!--
|
<!--
|
||||||
- Score IC
|
- Score IC
|
||||||
![Score IC](docs/_static/img/score_ic.png)
|
![Score IC](docs/_static/img/score_ic.png)
|
||||||
|
@ -500,7 +500,7 @@ Qlib data are stored in a compact format, which is efficient to be combined into
|
||||||
Join IM discussion groups:
|
Join IM discussion groups:
|
||||||
|[Gitter](https://gitter.im/Microsoft/qlib)|
|
|[Gitter](https://gitter.im/Microsoft/qlib)|
|
||||||
|----|
|
|----|
|
||||||
|![image](http://fintech.msra.cn/images_v070/qrcode/gitter_qr.png)|
|
|![image](https://github.com/microsoft/qlib/blob/main/docs/_static/img/qrcode/gitter_qr.png)|
|
||||||
|
|
||||||
# Contributing
|
# Contributing
|
||||||
We appreciate all contributions and thank all the contributors!
|
We appreciate all contributions and thank all the contributors!
|
||||||
|
|
|
@ -256,7 +256,7 @@ class HIST(Model):
|
||||||
raise ValueError("Empty data from dataset, please check your dataset config.")
|
raise ValueError("Empty data from dataset, please check your dataset config.")
|
||||||
|
|
||||||
if not os.path.exists(self.stock2concept):
|
if not os.path.exists(self.stock2concept):
|
||||||
url = "http://fintech.msra.cn/stock_data/downloads/qlib_csi300_stock2concept.npy"
|
url = "https://github.com/SunsetWolf/qlib_dataset/releases/download/v0/qlib_csi300_stock2concept.npy"
|
||||||
urllib.request.urlretrieve(url, self.stock2concept)
|
urllib.request.urlretrieve(url, self.stock2concept)
|
||||||
|
|
||||||
stock_index = np.load(self.stock_index, allow_pickle=True).item()
|
stock_index = np.load(self.stock_index, allow_pickle=True).item()
|
||||||
|
|
Загрузка…
Ссылка в новой задаче