зеркало из https://github.com/microsoft/qlib.git
c9ed050ef0
* Init model for both dataset * Remove some deprecated code * Add model template; * We must align with previous results * We choose another mode as the initial version * Almost success to run GRU * Successfully run training * Passed general_nn test * gru test * Alignment test passed * comment * fix readme & minor errors * general nn updates & benchmarks * Update examples/benchmarks/GeneralPtNN/workflow_config_gru2mlp.yaml --------- Co-authored-by: Young <afe.young@gmail.com> Co-authored-by: you-n-g <you-n-g@users.noreply.github.com> |
||
---|---|---|
.. | ||
benchmarks | ||
benchmarks_dynamic | ||
data_demo | ||
highfreq | ||
hyperparameter/LightGBM | ||
model_interpreter | ||
model_rolling | ||
nested_decision_execution | ||
online_srv | ||
orderbook_data | ||
portfolio | ||
rl | ||
rl_order_execution | ||
rolling_process_data | ||
tutorial | ||
README.md | ||
run_all_model.py | ||
workflow_by_code.ipynb | ||
workflow_by_code.py |
README.md
Requirements
Here is the minimal hardware requirements to run the workflow_by_code
example.
- Memory: 16G
- Free Disk: 5G
NOTE
The results will slightly vary on different OSs(the variance of annualized return will be less than 2%).
The evaluation results in the README.md
page are from Linux OS.