The repo, including this guide, is tested on Linux. Where applicable, we document differences in [Windows](#windows-specific-instructions) and [MacOS](#macos-specific-instructions) although
# 2. Follow Steps 1-5 in the Getting Started section in README.md to install the package and Jupyter kernel, adding the gpu extra to the pip install command:
pip install recommenders[gpu]
# 3. Within VSCode:
# a. Open a notebook with a GPU model, e.g., examples/00_quick_start/wide_deep_movielens.ipynb;
# 2. Follow Steps 1-5 in the Getting Started section in README.md to install the package and Jupyter kernel, adding the spark extra to the pip install command:
# 1. Go to the "Compute" tab on the left of the page, click on the provisioned cluster and then click on "Libraries".
# 2. Click the "Install new" button.
# 3. In the popup window, select "PyPI" as the library source. Enter "recommenders[examples]" as the package name. Click "Install" to install the package.
This repository includes an end-to-end example notebook that uses Azure Databricks to estimate a recommendation model using matrix factorization with Alternating Least Squares, writes pre-computed recommendations to Azure Cosmos DB, and then creates a real-time scoring service that retrieves the recommendations from Cosmos DB. In order to execute that [notebook](examples/05_operationalize/als_movie_o16n.ipynb), you must install the Recommenders repository as a library (as described above), **AND** you must also install some additional dependencies. With the *Quick install* method, you just need to pass an additional option to the [installation script](tools/databricks_install.py).
This option utilizes the installation script to do the setup. Just run the installation script
with an additional option. If you have already run the script once to upload and install the `Recommenders.egg` library, you can also add an `--overwrite` option:
You can follow instructions [here](https://docs.azuredatabricks.net/user-guide/libraries.html#install-a-library-on-a-cluster) for details on how to install packages from PyPI.
Additionally, you must install the [spark-cosmosdb connector](https://docs.databricks.com/spark/latest/data-sources/azure/cosmosdb-connector.html) on the cluster. The easiest way to manually do that is to:
1. Download the [appropriate jar](https://search.maven.org/remotecontent?filepath=com/azure/cosmos/spark/azure-cosmos-spark_3-1_2-12/4.3.1/azure-cosmos-spark_3-1_2-12-4.3.1.jar) from MAVEN. **NOTE** This is the appropriate jar for spark versions `3.1.X`, and is the appropriate version for the recommended Azure Databricks run-time detailed above. See the [Databricks installation script](https://github.com/microsoft/recommenders/blob/main/tools/databricks_install.py#L45) for other Databricks runtimes.
<!-- FIXME FIXME 23/04/01 move to experimental. Have not tested -->
The `xlearn` package has dependency on `cmake`. If one uses the `xlearn` related notebooks or scripts, make sure `cmake` is installed in the system. The easiest way to install on Linux is with apt-get: `sudo apt-get install -y build-essential cmake`. Detailed instructions for installing `cmake` from source can be found [here](https://cmake.org/install/).
## Windows-Specific Instructions
For Spark features to work, make sure Java and Spark are installed and respective environment varialbes such as `JAVA_HOME`, `SPARK_HOME` and `HADOOP_HOME` are set properly. Also make sure environment variables `PYSPARK_PYTHON` and `PYSPARK_DRIVER_PYTHON` are set to the the same python executable.
We recommend using [Homebrew](https://brew.sh/) to install the dependencies on macOS, including conda (please remember to add conda's path to `$PATH`). One may also need to install lightgbm using Homebrew before pip install the package.
For Spark features to work, make sure Java and Spark are installed first. Also make sure environment variables `PYSPARK_PYTHON` and `PYSPARK_DRIVER_PYTHON` are set to the the same python executable.
If you want to contribute to Recommenders, please first read the [Contributing Guide](./CONTRIBUTING.md). You will notice that our development branch is `staging`.
To start developing, you need to install the latest `staging` branch in local, the `dev` package, and any other package you want. For example, for starting developing with GPU models, you can use the following command:
```bash
git checkout staging
pip install -e .[dev,gpu]
```
You can decide which packages you want to install, if you want to install all of them, you can use the following command:
Depending on the type of recommender system and the notebook that needs to be run, there are different computational requirements.
Currently, tests are done on **Python CPU** (the base environment), **Python GPU** (corresponding to `[gpu]` extra above) and **PySpark** (corresponding to `[spark]` extra above).
Another way is to build a docker image and use the functions inside a [docker container](#setup-guide-for-docker).
First make sure that the tag that you want to add, e.g. `0.6.0`, is added in [`recommenders.py/__init__.py`](recommenders.py/__init__.py). Follow the [contribution guideline](CONTRIBUTING.md) to add the change.
1. When the new tag is pushed, a release pipeline is executed. This pipeline runs all the tests again (PR gate and nightly builds), generates a wheel and a tar.gz which are uploaded to a [GitHub draft release](https://github.com/microsoft/recommenders/releases).