optimize and remove unused code
This commit is contained in:
Родитель
b2618ab1e5
Коммит
432b3a8b84
|
@ -149,12 +149,6 @@ def test_e2e(spark, pandas_dummy_dataset, header):
|
|||
df = spark.createDataFrame(pandas_dummy_dataset)
|
||||
sar.fit(df)
|
||||
|
||||
# assert 4*4 + 32 == sar.item_similarity.count()
|
||||
|
||||
# print(sar.item_similarity
|
||||
# .toPandas()
|
||||
# .pivot_table(index='i1', columns='i2', values='value'))
|
||||
|
||||
test_df = spark.createDataFrame(
|
||||
pd.DataFrame({header["col_user"]: [3], header["col_item"]: [2]})
|
||||
)
|
||||
|
|
|
@ -122,23 +122,29 @@ class NextItNetIterator(SequentialIterator):
|
|||
history_lengths = [len(item_history_batch[i]) for i in range(instance_cnt)]
|
||||
max_seq_length_batch = self.max_seq_length
|
||||
item_history_batch_all = np.zeros(
|
||||
(instance_cnt * (batch_num_ngs + 1), max_seq_length_batch)
|
||||
).astype("int32")
|
||||
(instance_cnt * (batch_num_ngs + 1), max_seq_length_batch),
|
||||
dtype=np.int32,
|
||||
)
|
||||
item_cate_history_batch_all = np.zeros(
|
||||
(instance_cnt * (batch_num_ngs + 1), max_seq_length_batch)
|
||||
).astype("int32")
|
||||
(instance_cnt * (batch_num_ngs + 1), max_seq_length_batch),
|
||||
dtype=np.int32,
|
||||
)
|
||||
time_diff_batch = np.zeros(
|
||||
(instance_cnt * (batch_num_ngs + 1), max_seq_length_batch)
|
||||
).astype("float32")
|
||||
(instance_cnt * (batch_num_ngs + 1), max_seq_length_batch),
|
||||
dtype=np.float32,
|
||||
)
|
||||
time_from_first_action_batch = np.zeros(
|
||||
(instance_cnt * (batch_num_ngs + 1), max_seq_length_batch)
|
||||
).astype("float32")
|
||||
(instance_cnt * (batch_num_ngs + 1), max_seq_length_batch),
|
||||
dtype=np.float32,
|
||||
)
|
||||
time_to_now_batch = np.zeros(
|
||||
(instance_cnt * (batch_num_ngs + 1), max_seq_length_batch)
|
||||
).astype("float32")
|
||||
(instance_cnt * (batch_num_ngs + 1), max_seq_length_batch),
|
||||
dtype=np.float32,
|
||||
)
|
||||
mask = np.zeros(
|
||||
(instance_cnt * (1 + batch_num_ngs), max_seq_length_batch)
|
||||
).astype("float32")
|
||||
(instance_cnt * (1 + batch_num_ngs), max_seq_length_batch),
|
||||
dtype=np.float32,
|
||||
)
|
||||
|
||||
for i in range(instance_cnt):
|
||||
this_length = min(history_lengths[i], max_seq_length_batch)
|
||||
|
@ -174,7 +180,6 @@ class NextItNetIterator(SequentialIterator):
|
|||
item_cate_list[i],
|
||||
]
|
||||
label_list_all.append([1] * max_seq_length_batch)
|
||||
# label_list_all.append(1)
|
||||
item_list_all.append(positive_item)
|
||||
item_cate_list_all.append(positive_item_cate)
|
||||
|
||||
|
@ -193,7 +198,6 @@ class NextItNetIterator(SequentialIterator):
|
|||
count_inner += 1
|
||||
|
||||
label_list_all.append([0] * max_seq_length_batch)
|
||||
# label_list_all.append(0)
|
||||
item_list_all.append(negative_item_list)
|
||||
item_cate_list_all.append(negative_item_cate_list)
|
||||
count += 1
|
||||
|
@ -213,9 +217,6 @@ class NextItNetIterator(SequentialIterator):
|
|||
res["time_from_first_action"] = time_from_first_action_batch
|
||||
res["time_to_now"] = time_to_now_batch
|
||||
|
||||
# print("label_list_all.shape: ", res["labels"].shape)
|
||||
# print("item_list_all.shape: ", res["items"].shape)
|
||||
|
||||
return res
|
||||
|
||||
else:
|
||||
|
@ -223,21 +224,21 @@ class NextItNetIterator(SequentialIterator):
|
|||
history_lengths = [len(item_history_batch[i]) for i in range(instance_cnt)]
|
||||
max_seq_length_batch = self.max_seq_length
|
||||
item_history_batch_all = np.zeros(
|
||||
(instance_cnt, max_seq_length_batch)
|
||||
).astype("int32")
|
||||
(instance_cnt, max_seq_length_batch), dtype=np.int32
|
||||
)
|
||||
item_cate_history_batch_all = np.zeros(
|
||||
(instance_cnt, max_seq_length_batch)
|
||||
).astype("int32")
|
||||
time_diff_batch = np.zeros((instance_cnt, max_seq_length_batch)).astype(
|
||||
"float32"
|
||||
(instance_cnt, max_seq_length_batch), dtype=np.int32
|
||||
)
|
||||
time_diff_batch = np.zeros(
|
||||
(instance_cnt, max_seq_length_batch), dtype=np.float32
|
||||
)
|
||||
time_from_first_action_batch = np.zeros(
|
||||
(instance_cnt, max_seq_length_batch)
|
||||
).astype("float32")
|
||||
time_to_now_batch = np.zeros((instance_cnt, max_seq_length_batch)).astype(
|
||||
"float32"
|
||||
(instance_cnt, max_seq_length_batch), dtype=np.float32
|
||||
)
|
||||
mask = np.zeros((instance_cnt, max_seq_length_batch)).astype("float32")
|
||||
time_to_now_batch = np.zeros(
|
||||
(instance_cnt, max_seq_length_batch), dtype=np.float32
|
||||
)
|
||||
mask = np.zeros((instance_cnt, max_seq_length_batch), dtype=np.float32)
|
||||
|
||||
for i in range(instance_cnt):
|
||||
this_length = min(history_lengths[i], max_seq_length_batch)
|
||||
|
|
|
@ -204,7 +204,6 @@ class ConjugateGradientMS(Solver):
|
|||
# if ip_diff = man.inner(newx, diff, desc_dir) = 0
|
||||
except ZeroDivisionError:
|
||||
beta = 1
|
||||
# print(ip_diff,beta,man.inner(newx, diff, desc_dir))
|
||||
elif self._beta_type == BetaTypes.HagerZhang:
|
||||
diff = newgrad - oldgrad
|
||||
Poldgrad = man.transp(x, newx, Pgrad)
|
||||
|
|
Загрузка…
Ссылка в новой задаче