This commit is contained in:
Andreas Argyriou 2021-10-11 16:22:19 +00:00
Родитель 68af516243
Коммит aafbe1a7e0
10 изменённых файлов: 14 добавлений и 14 удалений

Просмотреть файл

@ -157,7 +157,7 @@ In the following `3.6` should be replaced with the Python version you are using
sudo dockerd &
# Pull the image from the Nvidia docker hub (https://hub.docker.com/r/nvidia/cuda) that is suitable for your system
# E.g. for Ubuntu 18.04 do
sudo docker run --gpus all -it --rm nvidia/cuda:10.0-cudnn7-runtime-ubuntu18.04
sudo docker run --gpus all -it --rm nvidia/cuda:11.2-cudnn8.1-runtime-ubuntu18.04
# Within the container:

Просмотреть файл

@ -2,7 +2,7 @@
To setup the documentation, first you need to install the dependencies of the full environment. For it please follow the [SETUP.md](../SETUP.md). Then type:
conda create -n reco_full python=3.6 cudatoolkit=10.0 "cudnn>=7.6"
conda create -n reco_full -c conda-forge python=3.6 cudatoolkit=11.2 cudnn=8.1
conda activate reco_full
pip install --no-cache --no-binary scikit-surprise .[all]
pip install sphinx_rtd_theme

Просмотреть файл

@ -47,7 +47,7 @@ pip install --no-cache --no-binary scikit-surprise recommenders[examples,gpu]
## GPU Support
You will need CUDA Toolkit v11.2 and CuDNN = 8.1 to enable both Tensorflow and PyTorch to use the GPU. For example, if you are using a conda enviroment, this can be installed with
You will need CUDA Toolkit v11.2 and CuDNN v8.1 to enable both Tensorflow and PyTorch to use the GPU. For example, if you are using a conda enviroment, this can be installed with
```bash
conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1
```

Просмотреть файл

@ -67,7 +67,7 @@ extras_require = {
"gpu": [
"nvidia-ml-py3>=7.352.0",
"tensorflow>=2.6", # compiled with CUDA 11.2, cudnn 8.1
"torch==1.2.0", # last os-common version with CUDA 10.0 support
"torch>=1.8", # for CUDA 11 support
"fastai>=1.0.46,<2",
],
"spark": [

Просмотреть файл

@ -31,7 +31,7 @@ extends:
task_name: "Test - Nightly Linux GPU"
timeout: 240
conda_env: "nightly_linux_gpu"
conda_opts: "python=3.6 cudatoolkit=10.0 \"cudnn>=7.6\""
conda_opts: "python=3.6 -c conda-forge cudatoolkit=11.2 cudnn=8.1"
pip_opts: "[gpu,examples,dev] -f https://download.pytorch.org/whl/cu100/torch_stable.html"
pytest_markers: "not spark and gpu"
pytest_params: "-x"

Просмотреть файл

@ -59,6 +59,6 @@ extends:
- unit
task_name: "Test - Unit Notebook Linux GPU"
conda_env: "unit_notebook_linux_gpu"
conda_opts: "python=3.6 cudatoolkit=10.0 \"cudnn>=7.6\""
conda_opts: "python=3.6 -c conda-forge cudatoolkit=11.2 cudnn=8.1"
pip_opts: "[gpu,examples,dev] -f https://download.pytorch.org/whl/cu100/torch_stable.html"
pytest_markers: "notebooks and not spark and gpu"

Просмотреть файл

@ -59,6 +59,6 @@ extends:
- unit
task_name: "Test - Unit Linux GPU"
conda_env: "unit_linux_gpu"
conda_opts: "python=3.6 cudatoolkit=10.0 \"cudnn>=7.6\""
conda_opts: "python=3.6 -c conda-forge cudatoolkit=11.2 cudnn=8.1"
pip_opts: "[gpu,dev] -f https://download.pytorch.org/whl/cu100/torch_stable.html"
pytest_markers: "not notebooks and not spark and gpu"

Просмотреть файл

@ -45,7 +45,7 @@ jobs:
- unit
task_name: "Test - Unit Linux GPU"
conda_env: "release_unit_linux_gpu"
conda_opts: "python=3.6 cudatoolkit=10.0 \"cudnn>=7.6\""
conda_opts: "python=3.6 -c conda-forge cudatoolkit=11.2 cudnn=8.1"
pip_opts: "[gpu] -f https://download.pytorch.org/whl/cu100/torch_stable.html"
pytest_markers: "not notebooks and not spark and gpu"
install: "release"
@ -56,7 +56,7 @@ jobs:
- unit
task_name: "Test - Unit Notebook Linux GPU"
conda_env: "release_unit_notebook_linux_gpu"
conda_opts: "python=3.6 cudatoolkit=10.0 \"cudnn>=7.6\""
conda_opts: "python=3.6 -c conda-forge cudatoolkit=11.2 cudnn=8.1"
pip_opts: "[gpu,examples] -f https://download.pytorch.org/whl/cu100/torch_stable.html"
pytest_markers: "notebooks and not spark and gpu"
install: "release"
@ -105,7 +105,7 @@ jobs:
task_name: "Test - Nightly Linux GPU"
timeout: 240
conda_env: "release_nightly_linux_gpu"
conda_opts: "python=3.6 cudatoolkit=10.0 \"cudnn>=7.6\""
conda_opts: "python=3.6 -c conda-forge cudatoolkit=11.2 cudnn=8.1"
pip_opts: "[gpu,examples] -f https://download.pytorch.org/whl/cu100/torch_stable.html"
pytest_markers: "not spark and gpu"
install: "release"

Просмотреть файл

@ -87,7 +87,7 @@ RUN if [ "${VIRTUAL_ENV}" = "conda" ] ; then pip install --no-cache --no-binary
###########
# GPU Stage
###########
FROM nvidia/cuda:10.0-cudnn7-runtime-ubuntu18.04 AS gpu
FROM nvidia/cuda:11.2-cudnn8.1-runtime-ubuntu18.04 AS gpu
ARG HOME
ARG VIRTUAL_ENV

Просмотреть файл

@ -65,9 +65,9 @@ CONDA_PYSPARK = {"pyarrow": "pyarrow>=0.8.0", "pyspark": "pyspark>=3"}
CONDA_GPU = {
"fastai": "fastai==1.0.46",
"numba": "numba>=0.38.1",
"pytorch": "pytorch>=1.0.0,<=1.2.0", # For cudatoolkit=10.0
"cudatoolkit": "cudatoolkit=10.0",
"cudnn": "cudnn>=7.6"
"pytorch": "pytorch>=1.8.0", # For cudatoolkit=11
"cudatoolkit": "cudatoolkit=11.2",
"cudnn": "cudnn=8.1"
}
PIP_BASE = {