Merge branch 'gramhagen/lgbm_scenario' of github.com:Microsoft/Recommenders into gramhagen/lgbm_scenario

This commit is contained in:
miguelgfierro 2019-03-29 14:37:17 +00:00
Родитель 8c0df8df39 505039b2cc
Коммит bdfb2db2a4
3 изменённых файлов: 3 добавлений и 1 удалений

Просмотреть файл

@ -53,7 +53,7 @@ The table below lists recommender algorithms available in the repository at the
| [FastAI Embedding Dot Bias (FAST)](notebooks/00_quick_start/fastai_movielens.ipynb) | Python CPU / Python GPU | Collaborative Filtering | General purpose algorithm with embeddings and biases for users and items |
| [Alternating Least Squares (ALS)](notebooks/00_quick_start/als_movielens.ipynb) | PySpark | Collaborative Filtering | Matrix factorization algorithm for explicit or implicit feedback in large datasets, optimized by Spark MLLib for scalability and distributed computing capability |
| [Vowpal Wabbit Family (VW)<sup>*</sup>](notebooks/02_model/vowpal_wabbit_deep_dive.ipynb) | Python CPU (train online) | Collaborative, Content-Based Filtering | Fast online learning algorithms, great for scenarios where user features / context are constantly changing |
| [LightGBM/Gradient Boosting Tree<sup>*</sup>](notebooks/00_quick_start/lightgbm_tinycriteo.ipynb) | Python CPU | Content-Based Filtering | Gradient Boosting Tree algorithm for fast training and low memory usage in content-based problems |
| [LightGBM/Gradient Boosting Tree<sup>*</sup>](notebooks/00_quick_start/lightgbm_tinycriteo.ipynb) | Python CPU / PySpark | Content-Based Filtering | Gradient Boosting Tree algorithm for fast training and low memory usage in content-based problems |
| [Deep Knowledge-Aware Network (DKN)<sup>*</sup>](notebooks/00_quick_start/dkn_synthetic.ipynb) | Python CPU / Python GPU | Content-Based Filtering | Deep learning algorithm incorporating a knowledge graph and article embeddings to provide powerful news or article recommendations |
| [Extreme Deep Factorization Machine (xDeepFM)<sup>*</sup>](notebooks/00_quick_start/xdeepfm_synthetic.ipynb) | Python CPU / Python GPU | Hybrid | Deep learning based algorithm for implicit and explicit feedback with user/item features |
| [Wide and Deep](notebooks/00_quick_start/wide_deep_movielens.ipynb) | Python CPU / Python GPU | Hybrid | Deep learning algorithm that can memorize feature interactions and generalize user features |

Просмотреть файл

@ -94,6 +94,7 @@ To set these variables every time the environment is activated, we can follow th
#!/bin/sh
export PYSPARK_PYTHON=/anaconda/envs/reco_pyspark/bin/python
export PYSPARK_DRIVER_PYTHON=/anaconda/envs/reco_pyspark/bin/python
unset SPARK_HOME
```
This will export the variables every time we do `conda activate reco_pyspark`. To unset these variables when we deactivate the environment, we create the file `/anaconda/envs/reco_pyspark/etc/conda/deactivate.d/env_vars.sh` and add:

Просмотреть файл

@ -7,6 +7,7 @@ In this directory, notebooks are provided to give a deep dive into training mode
| Notebook | Environment | Description |
| --- | --- | --- |
| [als_deep_dive](als_deep_dive.ipynb) | PySpark | Deep dive on the ALS algorithm and implementation.
| [mmlspark_lightgbm_criteo](mmlspark_lightgbm_criteo.ipynb) | PySpark | LightGBM gradient boosting tree algorithm implementation in MML Spark with Criteo dataset.
| [baseline_deep_dive](baseline_deep_dive.ipynb) | --- | Deep dive on baseline performance estimation.
| [ncf_deep_dive](ncf_deep_dive.ipynb) | Python CPU, GPU | Deep dive on a NCF algorithm and implementation.
| [rbm_deep_dive](rbm_deep_dive.ipynb)| Python CPU, GPU | Deep dive on the rbm algorithm and its implementation.