Update READMEs with libpython and numpy-base
This commit is contained in:
Родитель
72150ac936
Коммит
c85bdf20a5
|
@ -42,7 +42,7 @@ To install core utilities, CPU-based algorithms, and dependencies:
|
|||
|
||||
1. Ensure software required for compilation and Python libraries is installed. On Linux this can be supported by adding:
|
||||
```bash
|
||||
sudo apt-get install -y build-essential cmake libpython<version>
|
||||
sudo apt-get install -y build-essential libpython<version>
|
||||
```
|
||||
where `<version>` should be `3.6` or `3.7` as appropriate.
|
||||
|
||||
|
|
4
SETUP.md
4
SETUP.md
|
@ -58,6 +58,8 @@ An alternative is to run all the recommender utilities directly from a local cop
|
|||
|
||||
**NOTE** the `xlearn` package has dependency on `cmake`. If one uses the `xlearn` related notebooks or scripts, make sure `cmake` is installed in the system. The easiest way to install on Linux is with apt-get: `sudo apt-get install -y build-essential cmake`. Detailed instructions for installing `cmake` from source can be found [here](https://cmake.org/install/).
|
||||
|
||||
**NOTE** the models from Cornac require installation of `libpython` i.e. using `sudo apt-get install -y libpython3.6` or `libpython3.7`, depending on the version of Python.
|
||||
|
||||
**NOTE** PySpark v2.4.x requires Java version 8.
|
||||
|
||||
<details>
|
||||
|
@ -368,7 +370,7 @@ See guidelines in the Docker [README](tools/docker/README.md) for detailed instr
|
|||
|
||||
Example command to build and run Docker image with base CPU environment.
|
||||
```{shell}
|
||||
DOCKER_BUILDKIT=1 docker build -t recommenders:cpu --build-arg ENV="cpu" .
|
||||
DOCKER_BUILDKIT=1 docker build -t recommenders:cpu --build-arg ENV="cpu" --build-arg VIRTUAL_ENV="conda" .
|
||||
docker run -p 8888:8888 -d recommenders:cpu
|
||||
```
|
||||
|
||||
|
|
|
@ -7,8 +7,9 @@ This package contains functions to simplify common tasks used when developing an
|
|||
## Pre-requisites
|
||||
Some dependencies require compilation during pip installation. On Linux this can be supported by adding build-essential dependencies:
|
||||
```bash
|
||||
sudo apt-get install -y build-essential
|
||||
```
|
||||
sudo apt-get install -y build-essential libpython<version>
|
||||
```
|
||||
where `<version>` should be `3.6` or `3.7` as appropriate.
|
||||
|
||||
On Windows you will need [Microsoft C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/)
|
||||
|
||||
|
@ -21,6 +22,11 @@ To install core utilities, CPU-based algorithms, and dependencies
|
|||
pip install --upgrade pip
|
||||
pip install recommenders
|
||||
```
|
||||
In the case of conda, you also need to
|
||||
```bash
|
||||
conda install numpy-base
|
||||
```
|
||||
after the pip installation.
|
||||
|
||||
## Optional Dependencies
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче