This commit is contained in:
divyat09 2021-07-14 11:31:51 +00:00
Родитель 04db49e237
Коммит 299583b908
40 изменённых файлов: 2340 добавлений и 0 удалений

139
azure_scripts/chest.yaml Normal file
Просмотреть файл

@ -0,0 +1,139 @@
description: ChestXray Dataset
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
# - name: erm_oracle
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains kaggle_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --os_env 1
- name: erm
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --os_env 1
- name: rand_match
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 10.0 --model_name densenet121 --n_runs 3 --os_env 1
- name: csd
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset chestxray --method_name csd --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --rep_dim 1024 --os_env 1
- name: irm
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 10.0 --penalty_s 5 --model_name densenet121 --n_runs 3 --os_env 1
- name: irm-50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 50.0 --penalty_s 5 --model_name densenet121 --n_runs 3 --os_env 1
- name: irm-100
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 100.0 --penalty_s 5 --model_name densenet121 --n_runs 3 --os_env 1
# - name: perf_match
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name hybrid --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --penalty_aug 10.0 --os_env 1
# - name: erm_oracle_nih
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans --test_domains nih_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --os_env 1
# - name: erm_nih
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains chex_trans kaggle_trans --test_domains nih_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --os_env 1
# - name: rand_match_nih
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains chex_trans kaggle_trans --test_domains nih_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 10.0 --model_name densenet121 --n_runs 3 --os_env 1
# - name: csd_nih
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name csd --match_case 0.01 --train_domains chex_trans kaggle_trans --test_domains nih_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --rep_dim 1024 --os_env 1
# - name: irm_nih
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains chex_trans kaggle_trans --test_domains nih_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 10.0 --penalty_s 5 --model_name densenet121 --n_runs 3 --os_env 1
# - name: erm_oracle_chex
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains chex_trans --test_domains chex_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --os_env 1
# - name: erm_chex
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans kaggle_trans --test_domains chex_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --os_env 1
# - name: rand_match_chex
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans kaggle_trans --test_domains chex_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 10.0 --model_name densenet121 --n_runs 3 --os_env 1
# - name: csd_chex
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name csd --match_case 0.01 --train_domains nih_trans kaggle_trans --test_domains chex_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --rep_dim 1024 --os_env 1
# - name: irm_chex
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains nih_trans kaggle_trans --test_domains chex_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 10.0 --penalty_s 5 --model_name densenet121 --n_runs 3 --os_env 1

Просмотреть файл

@ -0,0 +1,43 @@
description: ChestXray Dataset Constrastive Learning
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
# - name: kaggle_test
# # one gpu
# sku: G1
# command:
# - python train.py --dataset chestxray --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos --train_domains nih_trans chex_trans --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --os_env 1
- name: chex_test
# one gpu
sku: G1
command:
- python train.py --dataset chestxray --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos --train_domains nih_trans kaggle_trans --test_domains chex_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --os_env 1
- name: nih_test
# one gpu
sku: G1
command:
- python train.py --dataset chestxray --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos --train_domains chex_trans kaggle_trans --test_domains nih_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --os_env 1

Просмотреть файл

@ -0,0 +1,43 @@
description: ChestXray Dataset Constrastive Learning
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
- name: kaggle_test
# one gpu
sku: G1
command:
- python train.py --dataset chestxray_spur --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 100 --batch_size 64 --pos_metric cos --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --os_env 1
# - name: chex_test
# # one gpu
# sku: G1
# command:
# - python train.py --dataset chestxray --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos --train_domains nih_trans kaggle_trans --test_domains chex_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --os_env 1
# - name: nih_test
# # one gpu
# sku: G1
# command:
# - python train.py --dataset chestxray --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos --train_domains chex_trans kaggle_trans --test_domains nih_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --os_env 1

Просмотреть файл

@ -0,0 +1,61 @@
description: Hyperparam sweep on ChestXray Dataset
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
search:
job_template:
# you may use {random_string:s} to avoid job name collisions
# {auto:3s} generates lr_0.00000_mom_0.5, .. etc
# {auto:2s} generates lr_0.00000_mo_0.5, .. etc
name: search_{experiment_name:s}_{auto:5s}
sku: G1
command:
- echo "--debug" && python train.py --dataset chestxray --method_name {method} --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name densenet121 --model_name densenet121 --n_runs 2 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --os_env 1 --lr {lr} --batch_size {batch_size} --weight_decay {weight_decay} --penalty_ws {penalty} --penalty_aug {penalty_aug} --model_name densenet121
type: grid
max_trials: 100
params:
- name: penalty
spec: discrete
# values: [10.0, 50.0]
values: [1.0]
- name: penalty_aug
spec: discrete
# values: [10.0]
values: [50.0]
- name: lr
spec: discrete
values: [0.001]
# values: [0.001, 0.0005]
- name: method
spec: discrete
values: [hybrid]
# values: [matchdg_erm, hybrid]
- name: batch_size
spec: discrete
# values: [16, 32, 64]
values: [16]
- name: weight_decay
spec: discrete
values: [0.0005]
# values: [0.0005, 0.001]

Просмотреть файл

@ -0,0 +1,62 @@
description: Hyperparam sweep on ChestXray Dataset
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
search:
job_template:
# you may use {random_string:s} to avoid job name collisions
# {auto:3s} generates lr_0.00000_mom_0.5, .. etc
# {auto:2s} generates lr_0.00000_mo_0.5, .. etc
name: search_{experiment_name:s}_{auto:5s}
sku: G1
command:
- echo "--debug" && python train.py --dataset chestxray_spur --method_name {method} --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name densenet121 --model_name densenet121 --n_runs 2 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --os_env 1 --lr {lr} --batch_size {batch_size} --weight_decay {weight_decay} --penalty_ws {penalty} --penalty_aug {penalty_aug} --model_name densenet121
type: grid
max_trials: 100
params:
- name: penalty
spec: discrete
# values: [10.0, 50.0]
# values: [1.0]
values: [50.0]
- name: penalty_aug
spec: discrete
values: [1.0]
# values: [100.0]
- name: lr
spec: discrete
values: [0.001]
# values: [0.001, 0.0005]
- name: method
spec: discrete
values: [matchdg_erm]
# values: [matchdg_erm, hybrid]
- name: batch_size
spec: discrete
# values: [16, 32, 64]
values: [16]
- name: weight_decay
spec: discrete
values: [0.0005]
# values: [0.0005, 0.001]

Просмотреть файл

@ -0,0 +1,139 @@
description: ChestXray Dataset
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
# - name: erm_oracle
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains kaggle_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --os_env 1
- name: erm
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset chestxray_spur --method_name erm_match --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --os_env 1
- name: rand_match
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset chestxray_spur --method_name erm_match --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 50.0 --model_name densenet121 --n_runs 3 --os_env 1
- name: csd
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset chestxray_spur --method_name csd --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --rep_dim 1024 --os_env 1
- name: irm
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset chestxray_spur --method_name irm --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 50.0 --penalty_s 5 --model_name densenet121 --n_runs 3 --os_env 1
# - name: irm-50
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 50.0 --penalty_s 5 --model_name densenet121 --n_runs 3 --os_env 1
# - name: irm-100
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 100.0 --penalty_s 5 --model_name densenet121 --n_runs 3 --os_env 1
# - name: perf_match
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name hybrid --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --penalty_aug 10.0 --os_env 1
# - name: erm_oracle_nih
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans --test_domains nih_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --os_env 1
# - name: erm_nih
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains chex_trans kaggle_trans --test_domains nih_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --os_env 1
# - name: rand_match_nih
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains chex_trans kaggle_trans --test_domains nih_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 10.0 --model_name densenet121 --n_runs 3 --os_env 1
# - name: csd_nih
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name csd --match_case 0.01 --train_domains chex_trans kaggle_trans --test_domains nih_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --rep_dim 1024 --os_env 1
# - name: irm_nih
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains chex_trans kaggle_trans --test_domains nih_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 10.0 --penalty_s 5 --model_name densenet121 --n_runs 3 --os_env 1
# - name: erm_oracle_chex
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains chex_trans --test_domains chex_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --os_env 1
# - name: erm_chex
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans kaggle_trans --test_domains chex_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --os_env 1
# - name: rand_match_chex
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans kaggle_trans --test_domains chex_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 10.0 --model_name densenet121 --n_runs 3 --os_env 1
# - name: csd_chex
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name csd --match_case 0.01 --train_domains nih_trans kaggle_trans --test_domains chex_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --rep_dim 1024 --os_env 1
# - name: irm_chex
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains nih_trans kaggle_trans --test_domains chex_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 10.0 --penalty_s 5 --model_name densenet121 --n_runs 3 --os_env 1

89
azure_scripts/fmnist.yaml Normal file
Просмотреть файл

@ -0,0 +1,89 @@
description: Fashion MNIST Dataset
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
- name: erm
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --epochs 60 --os_env 1
- name: random_match
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --epochs 60 --os_env 1
# - name: approx_25
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.25 --penalty_ws 0.1 --epochs 25 --os_env 1
# - name: approx_50
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.50 --penalty_ws 0.1 --epochs 25 --os_env 1
# - name: approx_75
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.75 --penalty_ws 0.1 --epochs 25 --os_env 1
- name: perfect
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset fashion_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --epochs 60 --os_env 1
- name: csd
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset fashion_mnist --method_name csd --match_case 0.01 --penalty_ws 0.0 --rep_dim 512 --epochs 60 --os_env 1
- name: irm
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset fashion_mnist --method_name irm --match_case 0.01 --penalty_irm 0.05 --penalty_s -1 --epochs 60 --os_env 1
- name: matchdg
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset fashion_mnist --method_name matchdg_erm --match_case -1 --penalty_ws 0.1 --epochs 60 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --n_runs 3 --os_env 1

Просмотреть файл

@ -0,0 +1,41 @@
description: Hyperparam sweep on IRM MNIST
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
search:
job_template:
# you may use {random_string:s} to avoid job name collisions
# {auto:3s} generates lr_0.00000_mom_0.5, .. etc
# {auto:2s} generates lr_0.00000_mo_0.5, .. etc
name: search_{experiment_name:s}_{auto:5s}
sku: G1
command:
- python train.py --dataset fashion_mnist --method_name irm --match_case 0.01 --lr 0.01 --penalty_irm {penalty} --penalty_s {threshold} --epochs 60 --os_env 1
type: grid
max_trials: 60
params:
- name: penalty
spec: discrete
values: [0.05, 0.1, 0.5, 1.0, 5.0]
- name: threshold
spec: discrete
values: [-1, 5, 15, 30, 45 ]

Просмотреть файл

@ -0,0 +1,41 @@
description: Hyperparam sweep on IRM MNIST
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
search:
job_template:
# you may use {random_string:s} to avoid job name collisions
# {auto:3s} generates lr_0.00000_mom_0.5, .. etc
# {auto:2s} generates lr_0.00000_mo_0.5, .. etc
name: search_{experiment_name:s}_{auto:5s}
sku: G1
command:
- python train.py --dataset rot_mnist --method_name irm --match_case 0.01 --lr 0.01 --penalty_irm {penalty} --penalty_s {threshold} --epochs 60 --os_env 1
type: grid
max_trials: 60
params:
- name: penalty
spec: discrete
values: [0.05, 0.1, 0.5, 1.0, 5.0]
- name: threshold
spec: discrete
values: [-1, 5, 15, 30, 45 ]

90
azure_scripts/mnist.yaml Normal file
Просмотреть файл

@ -0,0 +1,90 @@
description: Fashion MNIST Dataset
target:
service: amlk8s
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
name: itpeusp100cl
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements_new.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
# - name: erm
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --epochs 25 --os_env 1
# - name: random_match
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --epochs 25 --os_env 1
# - name: approx_25
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist --method_name erm_match --match_case 0.25 --penalty_ws 0.1 --epochs 25 --os_env 1
# - name: approx_50
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist --method_name erm_match --match_case 0.50 --penalty_ws 0.1 --epochs 25 --os_env 1
# - name: approx_75
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist --method_name erm_match --match_case 0.75 --penalty_ws 0.1 --epochs 25 --os_env 1
# - name: perfect
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --epochs 25 --os_env 1
# - name: csd
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist --method_name csd --match_case 0.01 --penalty_ws 0.0 --rep_dim 512 --epochs 25 --os_env 1
- name: irm
# one gpu
sku: G1
command:
- echo "--debug" && python data/data_gen.py rot_mnist lenet
# - echo "--debug" && python train.py --dataset rot_mnist --method_name irm --match_case 0.01 --penalty_irm 1.0 --penalty_s 5 --epochs 25 --os_env 1
# - name: matchdg
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist --method_name matchdg_erm --match_case -1 --penalty_ws 0.1 --epochs 25 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --n_runs 3 --os_env 1

Просмотреть файл

@ -0,0 +1,61 @@
description: MNIST Dataset Constrastive Learning
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
- name: fmnist_ctr_standard
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset fashion_mnist --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 60 --batch_size 64 --pos_metric cos --os_env 1
- name: fmnist_ctr_perfect
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset fashion_mnist --method_name matchdg_ctr --match_case 1.0 --match_flag 1 --epochs 60 --batch_size 64 --pos_metric cos --os_env 1
- name: fmnist_ctr_non_iterative
# one gpu
sku: G1
command:
- python train.py --dataset fashion_mnist --method_name matchdg_ctr --match_case 0.01 --match_flag 0 --epochs 60 --batch_size 256 --pos_metric cos --os_env 1
- name: rmnist_ctr_standard
# one gpu
sku: G1
command:
- python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 100 --batch_size 256 --pos_metric cos --train_domains 30 45 --os_env 1
- name: rmnist_ctr_perfect
# one gpu
sku: G1
command:
- python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 1.0 --match_flag 1 --epochs 100 --batch_size 256 --pos_metric cos --os_env 1
- name: rmnist_ctr_non_iterative
# one gpu
sku: G1
command:
- python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.01 --match_flag 0 --epochs 100 --batch_size 256 --pos_metric cos --os_env 1

Просмотреть файл

@ -0,0 +1,39 @@
description: MNIST Dataset Constrastive Learning
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
# - name: fmnist_ctr_standard
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset fashion_mnist --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 60 --batch_size 64 --pos_metric cos --os_env 1
- name: rmnist_ctr_standard
# one gpu
sku: G1
command:
- python train.py --dataset rot_mnist_spur --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 100 --batch_size 256 --pos_metric cos --img_c 3 --os_env 1

Просмотреть файл

@ -0,0 +1,89 @@
description: Fashion MNIST Dataset
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
# - name: erm
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist_spur --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --epochs 25 --img_c 3 --os_env 1
# - name: random_match
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist_spur --method_name erm_match --match_case 0.01 --penalty_ws 10.0 --epochs 25 --img_c 3 --os_env 1
# - name: approx_25
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist --method_name erm_match --match_case 0.25 --penalty_ws 0.1 --epochs 25 --os_env 1
# - name: approx_50
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist --method_name erm_match --match_case 0.50 --penalty_ws 0.1 --epochs 25 --os_env 1
# - name: approx_75
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist --method_name erm_match --match_case 0.75 --penalty_ws 0.1 --epochs 25 --os_env 1
# - name: perfect
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist_spur --method_name erm_match --match_case 1.0 --penalty_ws 10.0 --epochs 25 --img_c 3 --os_env 1
# - name: csd
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist_spur --method_name csd --match_case 0.01 --penalty_ws 0.0 --rep_dim 512 --epochs 25 --img_c 3 --os_env 1
# - name: irm
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset rot_mnist_spur --method_name irm --match_case 0.01 --penalty_irm 50.0 --penalty_s 5 --epochs 25 --img_c 3 --os_env 1
- name: matchdg
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset rot_mnist_spur --method_name matchdg_erm --match_case -1 --penalty_ws 0.1 --epochs 25 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --n_runs 3 --img_c 3 --os_env 1

73
azure_scripts/pacs.yaml Normal file
Просмотреть файл

@ -0,0 +1,73 @@
description: PACS Dataset
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
- name: photo
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.005 --epochs 50 --os_env 1
- name: art_painting
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.005 --epochs 50 --os_env 1
- name: cartoon
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.005 --epochs 50 --os_env 1
- name: sketch
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.005 --epochs 50 --os_env 1
- name: photo_random_match
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.5 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.005 --epochs 50 --os_env 1
- name: art_painting_random_match
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.5 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.005 --epochs 50 --os_env 1
- name: cartoon_random_match
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.5 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.005 --epochs 50 --os_env 1
- name: sketch_random_match
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.5 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.005 --epochs 50 --os_env 1

Просмотреть файл

@ -0,0 +1,71 @@
description: Hyperparam sweep on PACS
target:
service: amlk8s
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
name: itpeusp100cl
# name: itpeusp40cl
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements_new.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
search:
job_template:
# you may use {random_string:s} to avoid job name collisions
# {auto:3s} generates lr_0.00000_mom_0.5, .. etc
# {auto:2s} generates lr_0.00000_mo_0.5, .. etc
name: search_{experiment_name:s}_{auto:5s}
sku: G1
command:
# ERM, RandMatch
# - echo "--debug" && python train.py --dataset pacs --method_name {method} --match_case 0.0 --n_runs 3 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr {lr} --batch_size {batch_size} --weight_decay {weight_decay} --penalty_ws {penalty} --penalty_aug {penalty_aug} --model_name {model}
# MDG, Hybrid
- echo "--debug" && python train.py --dataset pacs --method_name {method} --match_case -1 --ctr_match_case 0.0 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr {lr} --batch_size {batch_size} --weight_decay {weight_decay} --penalty_ws {penalty} --penalty_aug {penalty_aug} --model_name {model}
type: grid
max_trials: 100
params:
- name: penalty
spec: discrete
# values: [0.1, 0.5, 1.0, 5.0]
values: [0.01, 1.0]
- name: penalty_aug
spec: discrete
# values: [0.1, 1.0, 5.0, 10.0]
values: [0.1, 1.0]
- name: lr
spec: discrete
values: [0.001]
# values: [0.01, 0.001, 0.0005]
- name: model
spec: discrete
values: [alexnet]
# values: [alexnet, resnet18, resnet50]
- name: method
spec: discrete
# values: [erm_match, matchdg_erm, hybrid]
values: [hybrid]
- name: batch_size
spec: discrete
values: [16]
- name: weight_decay
spec: discrete
values: [0.0005]

Просмотреть файл

@ -0,0 +1,71 @@
description: Hyperparam sweep on PACS
target:
service: amlk8s
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
name: itpeusp100cl
# name: itpeusp40cl
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements_new.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
search:
job_template:
# you may use {random_string:s} to avoid job name collisions
# {auto:3s} generates lr_0.00000_mom_0.5, .. etc
# {auto:2s} generates lr_0.00000_mo_0.5, .. etc
name: search_{experiment_name:s}_{auto:5s}
sku: G1
command:
# ERM, RandMatch
# - echo "--debug" && python train.py --dataset pacs --method_name {method} --match_case 0.0 --n_runs 3 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr {lr} --batch_size {batch_size} --weight_decay {weight_decay} --penalty_ws {penalty} --penalty_aug {penalty_aug} --model_name {model}
# MDG, Hybrid
- echo "--debug" && python train.py --dataset pacs --method_name {method} --match_case -1 --ctr_match_case 0.0 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr {lr} --batch_size {batch_size} --weight_decay {weight_decay} --penalty_ws {penalty} --penalty_aug {penalty_aug} --model_name {model}
type: grid
max_trials: 100
params:
- name: penalty
spec: discrete
# values: [0.1, 0.5, 1.0, 5.0]
values: [0.01, 1.0]
- name: penalty_aug
spec: discrete
# values: [0.1, 1.0, 5.0, 10.0]
values: [0.1, 1.0]
- name: lr
spec: discrete
values: [0.001]
# values: [0.01, 0.001, 0.0005]
- name: model
spec: discrete
values: [alexnet]
# values: [alexnet, resnet18, resnet50]
- name: method
spec: discrete
# values: [erm_match, matchdg_erm, hybrid]
values: [hybrid]
- name: batch_size
spec: discrete
values: [16]
- name: weight_decay
spec: discrete
values: [0.0005]

Просмотреть файл

@ -0,0 +1,74 @@
description: PACS Dataset
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
- name: photo_ctr_r18
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 256 --pos_metric cos --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --os_env 1
# - name: art_painting_ctr_r18
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset pacs --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 256 --pos_metric cos --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --os_env 1
- name: cartoon_ctr_r18
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 256 --pos_metric cos --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --os_env 1
- name: sketch_ctr_r18
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 256 --pos_metric cos --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --os_env 1
- name: photo_ctr_r50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet50 --os_env 1
- name: art_painting_ctr_r50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet50 --os_env 1
- name: cartoon_ctr_r50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet50 --os_env 1
- name: sketch_ctr_r50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet50 --os_env 1

Просмотреть файл

@ -0,0 +1,49 @@
description: PACS ERM Dataset
target:
service: amlk8s
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
name: itpeusp100cl
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements_new.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
# - name: photo_r18
# # one gpu
# sku: G1
# command:
# - python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.0005 --epochs 50 --model_name resnet18 --weight_decay 0.001 --os_env 1
# - name: art_painting_r18
# # one gpu
# sku: G1
# command:
# - python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.01 --epochs 50 --model_name resnet18 --weight_decay 0.001 --os_env 1
# - name: cartoon_r18
# # one gpu
# sku: G1
# command:
# - python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.001 --epochs 50 --model_name resnet18 --weight_decay 0.001 --os_env 1
- name: sketch_r18
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.01 --epochs 50 --model_name resnet18 --weight_decay 0.001 --os_env 1

Просмотреть файл

@ -0,0 +1,87 @@
description: PACS MatchDG Dataset
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
# - name: photo_r18
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --n_runs 3 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.0005 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.1 --penalty_aug 0.1 --model_name resnet18
# - name: art_painting_r18
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --n_runs 3 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.01 --penalty_aug 0.1 --model_name resnet18
# - name: cartoon_r18
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --n_runs 3 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.01 --penalty_aug 0.1 --model_name resnet18
- name: sketch_r18_0.01
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --n_runs 3 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.01 --penalty_aug 0.1 --model_name resnet18
- name: sketch_r18_0.1
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --n_runs 3 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.1 --penalty_aug 0.1 --model_name resnet18
- name: sketch_r18_0.5
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --n_runs 3 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.5 --penalty_aug 0.1 --model_name resnet18
# - name: photo_r50
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.0005 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.1 --penalty_aug 0.1 --model_name resnet50
# - name: art_painting_r50
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.01 --penalty_aug 0.1 --model_name resnet50
# - name: cartoon_r50
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.0005 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.01 --penalty_aug 0.1 --model_name resnet50
# - name: sketch_r50
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.01 --penalty_aug 0.1 --model_name resnet50

Просмотреть файл

@ -0,0 +1,73 @@
description: PACS MatchDG Dataset
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
# - name: photo_r18
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset pacs --method_name matchdg_erm --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.0005 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.1 --penalty_aug 0.1 --model_name resnet18
# - name: art_painting_r18
# # one gpu
# sku: G1
# command:
# - echo "--debug" && python train.py --dataset pacs --method_name matchdg_erm --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.5 --penalty_aug 0.1 --model_name resnet18
- name: cartoon_r18
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_erm --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 1.0 --penalty_aug 0.1 --model_name resnet18
- name: sketch_r18
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_erm --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.01 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.5 --penalty_aug 0.1 --model_name resnet18
- name: photo_r50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_erm --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.0005 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.1 --penalty_aug 0.1 --model_name resnet50
- name: art_painting_r50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_erm --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.1 --penalty_aug 0.1 --model_name resnet50
- name: cartoon_r50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_erm --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.0005 --batch_size 16 --weight_decay 0.001 --penalty_ws 1.0 --penalty_aug 0.1 --model_name resnet50
- name: sketch_r50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name matchdg_erm --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.5 --penalty_aug 0.1 --model_name resnet50

Просмотреть файл

@ -0,0 +1,73 @@
description: PACS MatchDG Dataset
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
- name: photo_r18
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.0005 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.0 --penalty_aug 0.1 --model_name resnet18
- name: art_painting_r18
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.0 --penalty_aug 0.1 --model_name resnet18
- name: cartoon_r18
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.0 --penalty_aug 0.1 --model_name resnet18
- name: sketch_r18
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.01 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.0 --penalty_aug 0.1 --model_name resnet18
- name: photo_r50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.0005 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.0 --penalty_aug 0.1 --model_name resnet50
- name: art_painting_r50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.0 --penalty_aug 0.1 --model_name resnet50
- name: cartoon_r50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.0005 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.0 --penalty_aug 0.1 --model_name resnet50
- name: sketch_r50
# one gpu
sku: G1
command:
- echo "--debug" && python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.0 --penalty_aug 0.1 --model_name resnet50

Просмотреть файл

@ -0,0 +1,72 @@
description: Hyperparam sweep on PACS
target:
service: amlk8s
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
name: itpeusp100cl
# name: itplabrl1cl1
# name: itpeusp40cl
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements_new.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
search:
job_template:
# you may use {random_string:s} to avoid job name collisions
# {auto:3s} generates lr_0.00000_mom_0.5, .. etc
# {auto:2s} generates lr_0.00000_mo_0.5, .. etc
name: search_{experiment_name:s}_{auto:5s}
sku: G1
command:
# ERM, RandMatch
# - echo "--debug" && python train.py --dataset pacs --method_name {method} --match_case 0.0 --n_runs 3 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr {lr} --batch_size {batch_size} --weight_decay {weight_decay} --penalty_ws {penalty} --penalty_aug {penalty_aug} --model_name {model}
# MDG, Hybrid
- echo "--debug" && python train.py --dataset pacs --method_name {method} --match_case -1 --ctr_match_case 0.0 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr {lr} --batch_size {batch_size} --weight_decay {weight_decay} --penalty_ws {penalty} --penalty_aug {penalty_aug} --model_name {model}
type: grid
max_trials: 100
params:
- name: penalty
spec: discrete
# values: [0.1, 0.5, 1.0, 5.0]
values: [0.1]
- name: penalty_aug
spec: discrete
# values: [0.1, 1.0, 5.0, 10.0]
values: [0.1, 1.0]
- name: lr
spec: discrete
values: [0.0005]
# values: [0.01, 0.001, 0.0005]
- name: model
spec: discrete
values: [alexnet]
# values: [alexnet, resnet18, resnet50]
- name: method
spec: discrete
# values: [erm_match, matchdg_erm, hybrid]
values: [hybrid]
- name: batch_size
spec: discrete
values: [16]
- name: weight_decay
spec: discrete
values: [0.0005]

Просмотреть файл

@ -0,0 +1,73 @@
description: PACS Random Match Dataset
target:
service: philly
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
cluster: rr1
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
- name: photo_r18
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.001 --epochs 50 --model_name resnet18 --weight_decay 0.001 --os_env 1
- name: art_painting_r18
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.5 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.01 --epochs 50 --model_name resnet18 --os_env 1
- name: cartoon_r18
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.01 --epochs 50 --model_name resnet18 --os_env 1
- name: sketch_r18
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.01 --epochs 50 --model_name resnet18 --os_env 1
- name: photo_r50
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.0005 --epochs 50 --model_name resnet50 --weight_decay 0.001 --os_env 1
- name: art_painting_r50
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.5 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.001 --epochs 50 --model_name resnet50 --os_env 1
- name: cartoon_r50
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.5 --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.0005 --epochs 50 --model_name resnet50 --os_env 1
- name: sketch_r50
# one gpu
sku: G1
command:
- python train.py --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --lr 0.01 --epochs 50 --model_name resnet50 --os_env 1

Просмотреть файл

@ -0,0 +1,70 @@
description: Hyperparam sweep on PACS
target:
service: amlk8s
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
name: itpeusp100cl
# name: itpeusp40cl
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements_new.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
search:
job_template:
# you may use {random_string:s} to avoid job name collisions
# {auto:3s} generates lr_0.00000_mom_0.5, .. etc
# {auto:2s} generates lr_0.00000_mo_0.5, .. etc
name: search_{experiment_name:s}_{auto:5s}
sku: G1
command:
# ERM, RandMatch
# - echo "--debug" && python train.py --dataset pacs --method_name {method} --match_case 0.0 --n_runs 3 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr {lr} --batch_size {batch_size} --weight_decay {weight_decay} --penalty_ws {penalty} --penalty_aug {penalty_aug} --model_name {model}
# MDG, Hybrid
- echo "--debug" && python train.py --dataset pacs --method_name {method} --match_case -1 --ctr_match_case 0.0 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet50 --n_runs 3 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --os_env 1 --lr {lr} --batch_size {batch_size} --weight_decay {weight_decay} --penalty_ws {penalty} --penalty_aug {penalty_aug} --model_name {model}
type: grid
max_trials: 100
params:
- name: penalty
spec: discrete
# values: [0.1, 0.5, 1.0, 5.0]
values: [0.01, 0.1]
- name: penalty_aug
spec: discrete
# values: [0.1, 1.0, 5.0, 10.0]
values: [0.1, 1.0]
- name: lr
spec: discrete
values: [0.001]
# values: [0.01, 0.001, 0.0005]
- name: model
spec: discrete
values: [alexnet]
# values: [alexnet, resnet18, resnet50]
- name: method
spec: discrete
# values: [erm_match, matchdg_erm, hybrid]
values: [hybrid]
- name: batch_size
spec: discrete
values: [16]
- name: weight_decay
spec: discrete
values: [0.0005]

Просмотреть файл

@ -0,0 +1,46 @@
description: MNIST Dat Setup
target:
service: amlk8s
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "msrlabs".
vc: resrchvc
# physical cluster to use (cam, gcr, rr1, rr2) or Azure clusters (eu1, eu2, etc.)
name: itpeusp100cl
environment:
image: pytorch/pytorch:1.5-cuda10.1-cudnn7-devel
setup:
- pip install --user -r requirements_new.txt
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR
data:
local_dir: $CONFIG_DIR/data/datasets/
remote_dir: data/datasets/
# list of jobs to run, we run 2 jobs in this example
jobs:
# name must be unique across the jobs
- name: rot_mnist_resnet18
# one gpu
sku: G1
command:
- echo "--debug" && python data/data_gen.py rot_mnist resnet18
- name: fashion_mnist_resnet18
# one gpu
sku: G1
command:
- echo "--debug" && python data/data_gen.py fashion_mnist resnet18
- name: rot_mnist_lenet
# one gpu
sku: G1
command:
- echo "--debug" && python data/data_gen.py rot_mnist lenet

29
misc_scripts/acc_pacs.sh Normal file
Просмотреть файл

@ -0,0 +1,29 @@
python test.py --test_metric acc --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains art_painting cartoon sketch --test_domains photo > results/pacs/acc/photo_erm.txt
python test.py --test_metric acc --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains photo cartoon sketch --test_domains art_painting > results/pacs/acc/painting_erm.txt
python test.py --test_metric acc --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains photo art_painting sketch --test_domains cartoon > results/pacs/acc/cartoon_erm.txt
python test.py --test_metric acc --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains photo art_painting cartoon --test_domains sketch > results/pacs/acc/sketch_erm.txt
python test.py --test_metric acc --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains art_painting cartoon sketch --test_domains photo > results/pacs/acc/photo_random.txt
python test.py --test_metric acc --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.5 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains photo cartoon sketch --test_domains art_painting > results/pacs/acc/painting_random.txt
python test.py --test_metric acc --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains photo art_painting sketch --test_domains cartoon > results/pacs/acc/cartoon_random.txt
python test.py --test_metric acc --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains photo art_painting cartoon --test_domains sketch > results/pacs/acc/sketch_random.txt
python test.py --test_metric acc --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name hybrid --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --penalty_ws 0.1 --match_case -1 --train_domains art_painting cartoon sketch --test_domains photo > results/pacs/acc/photo_hybrid.txt
python test.py --test_metric acc --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name hybrid --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --penalty_ws 0.01 --match_case -1 --train_domains photo cartoon sketch --test_domains art_painting > results/pacs/acc/painting_hybrid.txt
python test.py --test_metric acc --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name hybrid --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --penalty_ws 0.01 --match_case -1 --train_domains photo art_painting sketch --test_domains cartoon > results/pacs/acc/cartoon_hybrid.txt
python test.py --test_metric acc --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name hybrid --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --penalty_ws 0.5 --match_case -1 --train_domains photo art_painting cartoon --test_domains sketch > results/pacs/acc/sketch_hybrid.txt

Просмотреть файл

@ -0,0 +1,33 @@
# python test.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 5
# python test.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 5
# python test.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 5
# python test.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 25
# python test.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 25
# python test.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 25
# python test.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 50
# python test.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 50
# python test.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 50
# python test.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 75
# python test.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 75
# python test.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 75
# python test.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 100
# python test.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 100
# python test.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --test_metric adv_attack --penalty_diff_ctr 0 --adv_eps 100
python3 test.py --test_metric adv_attack --dataset fashion_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --adv_eps 0.3 > perfect.txt
python3 test.py --test_metric adv_attack --dataset fashion_mnist --method_name erm_match --match_case 0.75 --penalty_ws 0.1 --adv_eps 0.3 > case_75.txt
python3 test.py --test_metric adv_attack --dataset fashion_mnist --method_name erm_match --match_case 0.5 --penalty_ws 0.1 --adv_eps 0.3 > case_50.txt
python3 test.py --test_metric adv_attack --dataset fashion_mnist --method_name erm_match --match_case 0.25 --penalty_ws 0.1 --adv_eps 0.3 > case_25.txt
python3 test.py --test_metric adv_attack --dataset fashion_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --adv_eps 0.3 > random.txt
python3 test.py --test_metric adv_attack --dataset fashion_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --adv_eps 0.3 > erm.txt
python test.py --test_metric adv_attack --dataset fashion_mnist --method_name matchdg_erm --penalty_ws 0.1 --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --adv_eps 0.3 --n_runs 2 > match_dg.txt

72
misc_scripts/chex.sh Normal file
Просмотреть файл

@ -0,0 +1,72 @@
# Chex Evaluation
python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans kaggle_trans --test_domains chex --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 2 > erm_chex.txt
python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans kaggle_trans --test_domains chex --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 50.0 --model_name densenet121 --n_runs 2 > rand_chex.txt
python train.py --dataset chestxray --method_name csd --match_case 0.01 --train_domains nih_trans kaggle_trans --test_domains chex --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 2 --rep_dim 1024 > csd_chex.txt
python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains nih_trans kaggle_trans --test_domains chex --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 50.0 --penalty_s 5 --model_name densenet121 --n_runs 2 > irm_chex.txt
# NIH Evaluation
python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains chex_trans kaggle_trans --test_domains nih --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 2 > erm_nih.txt
python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains chex_trans kaggle_trans --test_domains nih --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 50.0 --model_name densenet121 --n_runs 2 > rand_nih.txt
python train.py --dataset chestxray --method_name csd --match_case 0.01 --train_domains chex_trans kaggle_trans --test_domains nih --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 2 --rep_dim 1024 > csd_nih.txt
python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains chex_trans kaggle_trans --test_domains nih --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 50.0 --penalty_s 5 --model_name densenet121 --n_runs 2 > irm_nih.txt
# Kaggle Evaluation
python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 2 > erm_kaggle.txt
python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 50.0 --model_name densenet121 --n_runs 2 > rand_kaggle.txt
python train.py --dataset chestxray --method_name csd --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 2 --rep_dim 1024 > csd_kaggle.txt
python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 50.0 --penalty_s 5 --model_name densenet121 --n_runs 2 > irm_kaggle.txt
# python train.py --dataset chestxray --method_name hybrid --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 3 --penalty_aug 10.0 > perf_chex_trans.txt
# python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 32 --penalty_ws 0.0 --model_name densenet121 --n_runs 1 > erm_chex.txt
# python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 32 --penalty_ws 1.0 --model_name densenet121 --n_runs 1 > rand_chex.txt
# python train.py --dataset chestxray --method_name csd --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 32 --penalty_ws 0.0 --model_name densenet121 --n_runs 1 --rep_dim 1024 > csd_chex.txt
# python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 32 --penalty_ws 1.0 --penalty_s 5 --model_name densenet121 --n_runs 1 > irm_chex.txt
# python train.py --dataset chestxray --method_name hybrid --match_case 0.01 --train_domains nih_trans chex_trans --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 16 --penalty_ws 0.0 --model_name densenet121 --n_runs 1 --penalty_aug 10.0 > perf_chex.txt
# #Kaggle Evaluation
# python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih chex --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --penalty_ws 0.0 --model_name densenet121 > erm_.txt
# python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih chex --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --penalty_ws 1.0 --model_name densenet121 > rand_chex.txt
# python train.py --dataset chestxray --method_name csd --match_case 0.01 --train_domains nih chex --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --penalty_ws 0.0 --model_name densenet121 > csd_chex.txt
# python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains nih chex --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --penalty_ws 1.0 --penalty_s 5 --model_name densenet121 > irm_chex.txt
# #NIH Evaluation
# python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains kaggle chex --test_domains nih --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --penalty_ws 0.0 --model_name densenet121 > erm_chex.txt
# python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains kaggle chex --test_domains nih --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --penalty_ws 1.0 --model_name densenet121 > rand_chex.txt
# python train.py --dataset chestxray --method_name csd --match_case 0.01 --train_domains kaggle chex --test_domains nih --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --penalty_ws 0.0 --model_name densenet121 > csd_chex.txt
# python train.py --dataset chestxray --method_name irm --match_case 0.01 --train_domains kaggle chex --test_domains nih --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --penalty_ws 1.0 --penalty_s 5 --model_name densenet121 > irm_chex.txt
#Alone
# python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains nih --test_domains nih --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 32 --penalty_ws 0.0 --model_name densenet121 --n_runs 1 > nih_alone.txt
# python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains chex --test_domains chex --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 32 --penalty_ws 0.0 --model_name densenet121 --n_runs 1 > chex_alone.txt
# python train.py --dataset chestxray --method_name erm_match --match_case 0.01 --train_domains kaggle --test_domains kaggle --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 40 --lr 0.001 --batch_size 32 --penalty_ws 0.0 --model_name densenet121 --n_runs 1 > kaggle_alone.txt

11
misc_scripts/domainbed.sh Normal file
Просмотреть файл

@ -0,0 +1,11 @@
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 1.0 --epochs 50 --model_name domain_bed_mnist --img_h 28 --img_w 28 --train_domains 15 30 45 60 75 --test_domains 0 > rand_1.txt
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.30 --penalty_ws 1.0 --epochs 50 --model_name domain_bed_mnist --img_h 28 --img_w 28 --train_domains 15 30 45 60 75 --test_domains 0 > mdg_1.txt
python train.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 1.0 --epochs 50 --model_name domain_bed_mnist --img_h 28 --img_w 28 --train_domains 15 30 45 60 75 --test_domains 0 > perf_1.txt
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --epochs 50 --model_name domain_bed_mnist --img_h 28 --img_w 28 --train_domains 15 30 45 60 75 --test_domains 0 > rand_0.1.txt
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.30 --penalty_ws 0.1 --epochs 50 --model_name domain_bed_mnist --img_h 28 --img_w 28 --train_domains 15 30 45 60 75 --test_domains 0 > mdg_0.1.txt
python train.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --epochs 50 --model_name domain_bed_mnist --img_h 28 --img_w 28 --train_domains 15 30 45 60 75 --test_domains 0 > perf_0.1.txt

16
misc_scripts/mnist_abl.sh Normal file
Просмотреть файл

@ -0,0 +1,16 @@
##Rotated MNIST
#Perfect MatchDG
python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 1.0 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos
#Non Interative MatchDG
python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.0 --match_flag 0 --epochs 50 --batch_size 64 --pos_metric cos
##Fashion MNIST
#Perfect MatchDG
python train.py --dataset fashion_mnist --method_name matchdg_ctr --match_case 1.0 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos
#Non Interative MatchDG
python train.py --dataset fashion_mnist --method_name matchdg_ctr --match_case 0.0 --match_flag 0 --epochs 50 --batch_size 64 --pos_metric cos

15
misc_scripts/pacs_ctr.sh Normal file
Просмотреть файл

@ -0,0 +1,15 @@
#Photo
python train.py --dataset pacs --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 15 --batch_size 128 --pos_metric cos --train_domains art_painting cartoon sketch --test_domains photo --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name $1
#Art Painting
python train.py --dataset pacs --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 15 --batch_size 128 --pos_metric cos --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name $1
#Cartoon
python train.py --dataset pacs --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 15 --batch_size 128 --pos_metric cos --train_domains photo art_painting sketch --test_domains cartoon --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name $1
#Sketch
python train.py --dataset pacs --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 15 --batch_size 128 --pos_metric cos --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name $1

Просмотреть файл

@ -0,0 +1,104 @@
#Kaggle
python3 cxray_run.py kaggle acc train
python3 cxray_run.py kaggle acc test
python3 cxray_run.py kaggle privacy_loss_attack
python3 cxray_run.py kaggle privacy_entropy
python3 cxray_run.py kaggle match_score test
#ChexPert
python3 cxray_run.py chex acc train
python3 cxray_run.py chex acc test
python3 cxray_run.py chex privacy_loss_attack
python3 cxray_run.py chex privacy_entropy
python3 cxray_run.py chex match_score test
#NIH
python3 cxray_run.py nih acc train
python3 cxray_run.py nih acc test
python3 cxray_run.py nih privacy_loss_attack
python3 cxray_run.py nih privacy_entropy
python3 cxray_run.py nih match_score test
# #Accuracy Train
# python test.py --test_metric acc --batch_size 64 --dataset chestxray --acc_data_case train --match_func_aug_case 1 --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/acc_train/erm.txt
# python test.py --test_metric acc --batch_size 64 --dataset chestxray --acc_data_case train --match_func_aug_case 1 --method_name erm_match --match_case 0.01 --penalty_ws 10.0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/acc_train/random.txt
# python test.py --test_metric acc --batch_size 64 --dataset chestxray --acc_data_case train --match_func_aug_case 1 --method_name csd --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/acc_train/csd.txt
# python test.py --test_metric acc --batch_size 64 --dataset chestxray --acc_data_case train --match_func_aug_case 1 --method_name irm --match_case 0.01 --penalty_s 5 --penalty_ws 10.0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/acc_train/irm.txt
# python test.py --test_metric acc --batch_size 64 --dataset chestxray --acc_data_case train --match_func_aug_case 1 --method_name matchdg_erm --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name densenet121 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --penalty_ws 50.0 --match_case -1 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/acc_train/matchdg.txt
# # #Accuracy Test
# # python test.py --test_metric acc --batch_size 64 --dataset chestxray --acc_data_case test --match_func_aug_case 1 --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/acc_test/erm.txt
# # python test.py --test_metric acc --batch_size 64 --dataset chestxray --acc_data_case test --match_func_aug_case 1 --method_name erm_match --match_case 0.01 --penalty_ws 10.0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/acc_test/random.txt
# # python test.py --test_metric acc --batch_size 64 --dataset chestxray --acc_data_case test --match_func_aug_case 1 --method_name csd --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/acc_test/csd.txt
# # python test.py --test_metric acc --batch_size 64 --dataset chestxray --acc_data_case test --match_func_aug_case 1 --method_name irm --match_case 0.01 --penalty_s 5 --penalty_ws 10.0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/acc_test/irm.txt
# # python test.py --test_metric acc --batch_size 64 --dataset chestxray --acc_data_case test --match_func_aug_case 1 --method_name matchdg_erm --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name densenet121 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --penalty_ws 50.0 --match_case -1 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/acc_test/matchdg.txt
# # #Mean Rank
# # python test.py --test_metric match_score --batch_size 64 --dataset chestxray --match_func_data_case test --match_func_aug_case 1 --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/match_score/erm.txt
# # python test.py --test_metric match_score --batch_size 64 --dataset chestxray --match_func_data_case test --match_func_aug_case 1 --method_name erm_match --match_case 0.01 --penalty_ws 10.0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle
# # python test.py --test_metric match_score --batch_size 64 --dataset chestxray --match_func_data_case test --match_func_aug_case 1 --method_name csd --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle
# # python test.py --test_metric match_score --batch_size 64 --dataset chestxray --match_func_data_case test --match_func_aug_case 1 --method_name irm --match_case 0.01 --penalty_s 5 --penalty_ws 10.0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle
# # python test.py --test_metric match_score --batch_size 64 --dataset chestxray --match_func_data_case test --match_func_aug_case 1 --method_name matchdg_erm --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name densenet121 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --penalty_ws 50.0 --match_case -1 --train_domains nih_trans chex_trans --test_domains kaggle
# # #MIA Attack
# # python test.py --test_metric mia --mia_sample_size 1000 --mia_logit 1 --batch_size 64 --dataset chestxray --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy/erm.txt
# # python test.py --test_metric mia --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name erm_match --match_case 0.01 --penalty_ws 10 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy/random.txt
# # python test.py --test_metric mia --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name csd --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy/csd.txt
# # python test.py --test_metric mia --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name irm --match_case 0.01 --penalty_s 5 --penalty_ws 10.0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy/irm.txt
# # python test.py --test_metric mia --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name matchdg_erm --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name densenet121 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --penalty_ws 50.0 --match_case -1 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy/matchdg.txt
# # #Entorpy Attack
# # python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy_entropy/erm.txt
# # python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name erm_match --match_case 0.01 --penalty_ws 10 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy_entropy/random.txt
# # python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name csd --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy_entropy/csd.txt
# # python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name irm --match_case 0.01 --penalty_s 5 --penalty_ws 10.0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy_entropy/irm.txt
# # python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name matchdg_erm --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name densenet121 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --penalty_ws 50.0 --match_case -1 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy_entropy/matchdg.txt
# # #Loss Attack
# # python test.py --test_metric privacy_loss_attack --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy_loss/erm.txt
# # python test.py --test_metric privacy_loss_attack --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name erm_match --match_case 0.01 --penalty_ws 10 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy_loss/random.txt
# # python test.py --test_metric privacy_loss_attack --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name csd --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy_loss/csd.txt
# # python test.py --test_metric privacy_loss_attack --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name irm --match_case 0.01 --penalty_s 5 --penalty_ws 10.0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy_loss/irm.txt
# # python test.py --test_metric privacy_loss_attack --mia_sample_size 1000 --batch_size 64 --dataset chestxray --method_name matchdg_erm --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name densenet121 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --penalty_ws 50.0 --match_case -1 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/privacy_loss/matchdg.txt
#Attribute Attack
# python test.py --test_metric attribute_attack --mia_logit 1 --batch_size 64 --attribute_domain 1 --dataset chestxray --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/attribute_attack/erm.txt
# python test.py --test_metric attribute_attack --mia_logit 1 --batch_size 64 --attribute_domain 1 --dataset chestxray --method_name erm_match --match_case 0.01 --penalty_ws 10.0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/attribute_attack/random.txt
# python test.py --test_metric attribute_attack --mia_logit 1 --batch_size 64 --attribute_domain 1 --dataset chestxray --method_name csd --match_case 0.01 --penalty_ws 0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/attribute_attack/csd.txt
# python test.py --test_metric attribute_attack --mia_logit 1 --batch_size 64 --attribute_domain 1 --dataset chestxray --method_name irm --match_case 0.01 --penalty_s 5 --penalty_ws 10.0 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/attribute_attack/irm.txt
# python test.py --test_metric attribute_attack --mia_logit 1 --batch_size 64 --attribute_domain 1 --dataset chestxray --method_name matchdg_erm --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name densenet121 --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --penalty_ws 50.0 --match_case -1 --train_domains nih_trans chex_trans --test_domains kaggle > results/chestxray/attribute_attack/matchdg.txt

Просмотреть файл

@ -0,0 +1,39 @@
#Rot MNIST
# python3 mnist_run.py rot_mnist train_all acc train
# python3 mnist_run.py rot_mnist train_all acc test
# python3 mnist_run.py rot_mnist train_all privacy_loss_attack
# python3 mnist_run.py rot_mnist train_all privacy_entropy
# python3 mnist_run.py rot_mnist train_all match_score test
# python3 mnist_run.py rot_mnist train_abl_3 acc train
# python3 mnist_run.py rot_mnist train_abl_3 acc test
# python3 mnist_run.py rot_mnist train_abl_3 privacy_loss_attack
# python3 mnist_run.py rot_mnist train_abl_3 privacy_entropy
# python3 mnist_run.py rot_mnist train_abl_3 match_score test
# python3 mnist_run.py rot_mnist train_abl_2 acc train
# python3 mnist_run.py rot_mnist train_abl_2 acc test
# python3 mnist_run.py rot_mnist train_abl_2 privacy_loss_attack
# python3 mnist_run.py rot_mnist train_abl_2 privacy_entropy
# python3 mnist_run.py rot_mnist train_abl_2 match_score test
#Fashion MNIST
# python3 mnist_run.py fashion_mnist train_all acc train
# python3 mnist_run.py fashion_mnist train_all acc test
python3 mnist_run.py fashion_mnist train_all privacy_loss_attack
# python3 mnist_run.py fashion_mnist train_all privacy_entropy
# python3 mnist_run.py fashion_mnist train_all match_score test
# python3 mnist_run.py fashion_mnist train_abl_3 acc train
# python3 mnist_run.py fashion_mnist train_abl_3 acc test
python3 mnist_run.py fashion_mnist train_abl_3 privacy_loss_attack
# python3 mnist_run.py fashion_mnist train_abl_3 privacy_entropy
# python3 mnist_run.py fashion_mnist train_abl_3 match_score test
# python3 mnist_run.py fashion_mnist train_abl_2 acc train
# python3 mnist_run.py fashion_mnist train_abl_2 acc test
python3 mnist_run.py fashion_mnist train_abl_2 privacy_loss_attack
# python3 mnist_run.py fashion_mnist train_abl_2 privacy_entropy
# python3 mnist_run.py fashion_mnist train_abl_2 match_score test

Просмотреть файл

@ -0,0 +1,24 @@
# python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains art_painting cartoon sketch --test_domains photo > results/pacs/entropy/photo_erm.txt
# python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains photo cartoon sketch --test_domains art_painting > results/pacs/entropy/painting_erm.txt
# python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains photo art_painting sketch --test_domains cartoon > results/pacs/entropy/cartoon_erm.txt
# python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains photo art_painting cartoon --test_domains sketch > results/pacs/entropy/sketch_erm.txt
# python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains art_painting cartoon sketch --test_domains photo > results/pacs/entropy/photo_random.txt
# python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.5 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains photo cartoon sketch --test_domains art_painting > results/pacs/entropy/painting_random.txt
# python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains photo art_painting sketch --test_domains cartoon > results/pacs/entropy/cartoon_random.txt
# python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --train_domains photo art_painting cartoon --test_domains sketch > results/pacs/entropy/sketch_random.txt
python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name hybrid --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --penalty_ws 0.1 --match_case -1 --train_domains art_painting cartoon sketch --test_domains photo > results/pacs/entropy/photo_hybrid.txt
python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name hybrid --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --penalty_ws 0.01 --match_case -1 --train_domains photo cartoon sketch --test_domains art_painting > results/pacs/entropy/painting_hybrid.txt
python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name hybrid --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --penalty_ws 0.01 --match_case -1 --train_domains photo art_painting sketch --test_domains cartoon > results/pacs/entropy/cartoon_hybrid.txt
python test.py --test_metric privacy_entropy --mia_sample_size 1000 --batch_size 64 --dataset pacs --method_name hybrid --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name resnet18 --penalty_ws 0.5 --match_case -1 --train_domains photo art_painting cartoon --test_domains sketch > results/pacs/entropy/sketch_hybrid.txt

Просмотреть файл

@ -0,0 +1,39 @@
#RotMNIST
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --epochs 25
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --epochs 25
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.25 --penalty_ws 0.1 --epochs 25
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.50 --penalty_ws 0.1 --epochs 25
python train.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --epochs 25
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.75 --penalty_ws 0.1 --epochs 25
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --epochs 25
python train.py --dataset rot_mnist --method_name irm --match_case 0.01 --penalty_irm 1.0 --penalty_s 5 -- epochs 25
python train.py --dataset rot_mnist --method_name csd --match_case 0.01 --penalty_ws 0.0 -- epochs 25
# python train.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --epochs 25 --train_domains 30 45
# python train.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --epochs 25 --train_domains 30 45
# python train.py --dataset rot_mnist --method_name erm_match --match_case 0.25 --penalty_ws 0.1 --epochs 25 --train_domains 30 45
# python train.py --dataset rot_mnist --method_name erm_match --match_case 0.50 --penalty_ws 0.1 --epochs 25 --train_domains 30 45
# python train.py --dataset rot_mnist --method_name erm_match --match_case 0.75 --penalty_ws 0.1 --epochs 25 --train_domains 30 45
# python train.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --epochs 25 --train_domains 30 45
# python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 30 --batch_size 64 --pos_metric cos
# python train.py --dataset rot_mnist --method_name matchdg_erm --penalty_ws 0.1 --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --n_runs 3 --epochs 25
# python train.py --dataset rot_mnist --method_name csd --match_case 0.01 --penalty_ws 0.0 -- epochs 25 --train_domains 30 45
# python train.py --dataset rot_mnist --method_name irm --match_case 0.01 --penalty_irm 1.0 --penalty_s 5 -- epochs 25 --train_domains 30 45
# python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 30 --batch_size 64 --pos_metric cos
# python train.py --dataset rot_mnist --method_name matchdg_erm --penalty_ws 0.1 --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --n_runs 3 --epochs 25
#FashionMNIST
# python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.0 --epochs 25
# python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.1 --epochs 25
# python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.25 --penalty_ws 0.1 --epochs 25
# python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.50 --penalty_ws 0.1 --epochs 25
# python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.75 --penalty_ws 0.1 --epochs 25
# python train.py --dataset fashion_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --epochs 25
# python train.py --dataset fashion_mnist --method_name csd --match_case 0.01 --penalty_ws 0.0 -- epochs 25
#ChestXRay
# python train.py --dataset chestxray --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 3 --batch_size 32 --pos_metric cos --train_domains nih_trans chex_trans --test_domains kaggle_trans --out_classes 2 --perfect_match 0 --img_c 3 --pre_trained 1 --model_name densenet121 --n_runs 2

Просмотреть файл

@ -0,0 +1,16 @@
#ERM MatchDG
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.5 --penalty_ws 0.25 --model domain_bed_mnist --img_w 28 --img_h 28 --epochs 25 --train_domains 15 30 45 60 75 --test_domain 0
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.5 --penalty_ws 0.25 --model domain_bed_mnist --img_w 28 --img_h 28 --epochs 25 --train_domains 0 15 30 45 60 --test_domain 75
#ERM RandMatch
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.25 --model domain_bed_mnist --img_w 28 --img_h 28 --epochs 25 --train_domains 15 30 45 60 75 --test_domain 0
python train.py --dataset rot_mnist --method_name erm_match --match_case 0.01 --penalty_ws 0.25 --model domain_bed_mnist --img_w 28 --img_h 28 --epochs 25 --train_domains 0 15 30 45 60 --test_domain 75
#ERM PerfMatch
python train.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.25 --model domain_bed_mnist --img_w 28 --img_h 28 --epochs 25 --train_domains 15 30 45 60 75 --test_domain 0
python train.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.25 --model domain_bed_mnist --img_w 28 --img_h 28 --epochs 25 --train_domains 0 15 30 45 60 --test_domain 75

112
misc_scripts/slab-run.sh Normal file
Просмотреть файл

@ -0,0 +1,112 @@
# python train.py --dataset slab --model_name slab --method_name perf_match --batch_size 64 --lr 0.1 --penalty_ws 0.0 --epochs 30 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.50 --n_runs 3 > slab_temp/erm.txt
# python test.py --test_metric acc --dataset slab --model_name slab --method_name perf_match --penalty_ws 0.0 --out_classes 2 --train_domains 0.0 0.10 --n_runs 3 --acc_data_case train
# python test.py --test_metric slab_feat_eval --dataset slab --model_name slab --method_name perf_match --penalty_ws 0.0 --out_classes 2 --train_domains 0.0 0.10 --n_runs 3 --match_func_data_case train
# python test_slab.py --method_name perf_match --penalty_ws 0.0 --n_runs 3 --train_domains 0.0 0.10 --test_domain 0.3
# # python test.py --test_metric mia --dataset slab --model_name slab --method_name perf_match --penalty_ws 0.0 --mia_logit 1 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.50 --n_runs 3 > slab_temp/erm-mi.txt
# # python test.py --test_metric privacy_entropy --dataset slab --model_name slab --method_name perf_match --penalty_ws 0.0 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.50 --n_runs 3 > slab_temp/erm-entropy.txt
# # python test.py --test_metric privacy_loss_attack --dataset slab --model_name slab --method_name perf_match --penalty_ws 0.0 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.50 --n_runs 3 > slab_temp/erm-loss.txt
# python train.py --dataset slab --model_name slab --method_name rand_match --batch_size 64 --lr 0.1 --penalty_ws 1.0 --epochs 30 --out_classes 2 --train_domains 0.0 0.10 --test_domains 1.0 --n_runs 3 > slab_temp/rand.txt
# python test.py --test_metric acc --dataset slab --model_name slab --method_name rand_match --penalty_ws 1.0 --out_classes 2 --train_domains 0.0 0.10 --n_runs 3 --acc_data_case train
# python test_slab.py --method_name rand_match --penalty_ws 1.0 --n_runs 3 --train_domains 0.0 0.10 --test_domain 0.3
# # python test.py --test_metric mia --dataset slab --model_name slab --method_name rand_match --penalty_ws 10.0 --mia_logit 1 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.50 --n_runs 3 > slab_temp/rand-mi.txt
# # python test.py --test_metric privacy_entropy --dataset slab --model_name slab --method_name rand_match --penalty_ws 10.0 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.50 --n_runs 3 > slab_temp/rand-entropy.txt
# # python test.py --test_metric privacy_loss_attack --dataset slab --model_name slab --method_name rand_match --penalty_ws 10.0 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.50 --n_runs 3 > slab_temp/rand-loss.txt
# python train.py --dataset slab --model_name slab --method_name perf_match --batch_size 64 --lr 0.1 --penalty_ws 1.0 --epochs 30 --out_classes 2 --train_domains 0.0 0.10 --test_domains 1.0 --n_runs 3 > slab_temp/perf.txt
# python test.py --test_metric acc --dataset slab --model_name slab --method_name perf_match --penalty_ws 1.0 --out_classes 2 --train_domains 0.0 0.10 --n_runs 3 --acc_data_case train
# python test_slab.py --method_name perf_match --penalty_ws 1.0 --n_runs 3 --train_domains 0.0 0.10 --test_domain 0.3
# # python test.py --test_metric mia --dataset slab --model_name slab --method_name perf_match --penalty_ws 10.0 --mia_logit 1 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.50 --n_runs 3 > slab_temp/perf-mi.txt
# # python test.py --test_metric privacy_entropy --dataset slab --model_name slab --method_name perf_match --penalty_ws 10.0 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.50 --n_runs 3 > slab_temp/perf-entropy.txt
# # python test.py --test_metric privacy_loss_attack --dataset slab --model_name slab --method_name perf_match --penalty_ws 10.0 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.50 --n_runs 3
# #IRM
# python train.py --dataset slab --model_name slab --method_name irm_slab --batch_size 64 --lr 0.1 --penalty_irm 10.0 --penalty_s 2 --epochs 30 --out_classes 2 --train_domains 0.0 0.10 --test_domains 1.0 --n_runs 3 > slab_temp/irm.txt
# #CSD
# python train.py --dataset slab --model_name slab --method_name csd_slab --batch_size 64 --lr 0.1 --penalty_ws 0.0 --epochs 30 --out_classes 2 --train_domains 0.0 0.10 --test_domains 1.0 --n_runs 3 --rep_dim 100 > slab_temp/csd.txt
# ## Slab Spur
# python train.py --dataset slab_spur --model_name slab --method_name perf_match --batch_size 64 --lr 0.1 --penalty_ws 0.0 --epochs 30 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.90 --n_runs 3 --slab_data_dim 3
# python train.py --dataset slab_spur --model_name slab --method_name perf_match --batch_size 64 --lr 0.1 --penalty_ws 50.0 --epochs 30 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.90 --n_runs 3 --slab_data_dim 3
# python train.py --dataset slab_spur --model_name slab --method_name rand_match --batch_size 64 --lr 0.1 --penalty_ws 50.0 --epochs 30 --out_classes 2 --train_domains 0.0 0.10 --test_domains 1.0 --n_runs 3 --slab_data_dim 3
# python train.py --dataset slab_spur --model_name slab --method_name irm_slab --batch_size 64 --lr 0.1 --penalty_irm 10.0 --penalty_s 2 --epochs 30 --out_classes 2 --train_domains 0.0 0.10 --test_domains 1.0 --n_runs 3 --slab_data_dim 3
# python train.py --dataset slab_spur --model_name slab --method_name csd_slab --batch_size 64 --lr 0.1 --penalty_ws 0.0 --epochs 30 --out_classes 2 --train_domains 0.0 0.10 --test_domains 1.0 --n_runs 3 --rep_dim 100 --slab_data_dim 3
# # Train Case
# python test.py --test_metric acc --dataset slab_spur --model_name slab --method_name perf_match --penalty_ws 50.0 --out_classes 2 --train_domains 0.0 0.10 --n_runs 3 --acc_data_case train --slab_data_dim 3
# # #Attribute Attack
# # python test.py --test_metric attribute_attack --mia_logit 1 --attribute_domain 0 --batch_size 64 --dataset slab_spur --model_name slab --method_name perf_match --penalty_ws 0.0 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.90 --n_runs 3 --slab_data_dim 3
# python test.py --test_metric attribute_attack --mia_logit 1 --attribute_domain 0 --batch_size 64 --dataset slab_spur --model_name slab --method_name perf_match --penalty_ws 0.0 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.90 --n_runs 3 --slab_data_dim 3
# python test.py --test_metric attribute_attack --mia_logit 1 --attribute_domain 0 --batch_size 64 --dataset slab_spur --model_name slab --method_name perf_match --penalty_ws 50.0 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.90 --n_runs 3 --slab_data_dim 3
# python3 slab-run.py train
# python3 slab-run.py test
# python3 slab-run.py train_plot
python test_slab.py --method_name perf_match --penalty_ws 0.0 --n_runs 3 --train_domains 0.0 0.10 --test_domain 0.90 --slab_noise 0.05 > slab_noise/erm_auc.txt
python test_slab.py --method_name perf_match --penalty_ws 1.0 --n_runs 3 --train_domains 0.0 0.10 --test_domain 0.90 --slab_noise 0.05 > slab_noise/perf_auc.txt
python test.py --test_metric privacy_entropy --dataset slab --model_name slab --method_name perf_match --penalty_ws 0.0 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.90 --n_runs 3 --slab_noise 0.05 > slab_noise/erm_entropy.txt
python test.py --test_metric privacy_entropy --dataset slab --model_name slab --method_name perf_match --penalty_ws 1.0 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.90 --n_runs 3 --slab_noise 0.05 > slab_noise/perf_entropy.txt
python test.py --test_metric privacy_loss_attack --dataset slab --model_name slab --method_name perf_match --penalty_ws 0.0 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.90 --n_runs 3 --slab_noise 0.05 > slab_noise/erm_loss.txt
python test.py --test_metric privacy_loss_attack --dataset slab --model_name slab --method_name perf_match --penalty_ws 1.0 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.90 --n_runs 3 --slab_noise 0.05 > slab_noise/perf_loss.txt
# python test.py --test_metric mia --dataset slab --model_name slab --method_name perf_match --penalty_ws 0.0 --mia_logit 1 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.15 --n_runs 3 --slab_noise 0.05 > slab_noise/erm_mi.txt
# python test.py --test_metric mia --dataset slab --model_name slab --method_name perf_match --penalty_ws 1.0 --mia_logit 1 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.15 --n_runs 3 --slab_noise 0.05 > slab_noise/perf_mi.txt
python train.py --dataset slab --model_name slab --method_name perf_match --batch_size 64 --lr 0.1 --penalty_ws 0.0 --epochs 30 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.90 --n_runs 3 --slab_noise 0.20
python train.py --dataset slab --model_name slab --method_name mask_linear --batch_size 64 --lr 0.1 --penalty_ws 0.0 --epochs 30 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.90 --n_runs 3 --slab_noise 0.20
python test_slab.py --method_name perf_match --penalty_ws 0.0 --n_runs 3 --train_domains 0.0 0.10 --test_domain 0.30 --slab_noise 0.20
python test_slab.py --method_name mask_linear --penalty_ws 0.0 --n_runs 3 --train_domains 0.0 0.10 --test_domain 0.3 --slab_noise 0.20
python test.py --test_metric mia --dataset slab --model_name slab --method_name perf_match --penalty_ws 0.0 --mia_logit 1 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.30 --n_runs 3 --slab_noise 0.20
python test.py --test_metric mia --dataset slab --model_name slab --method_name mask_linear --penalty_ws 0.0 --mia_logit 1 --mia_sample_size 400 --out_classes 2 --train_domains 0.0 0.10 --test_domains 0.30 --n_runs 3 --slab_noise 0.20

3
misc_scripts/t3.sh Normal file
Просмотреть файл

@ -0,0 +1,3 @@
python3 cxray_run.py kaggle train
python3 cxray_run.py chex train
python3 cxray_run.py nih train

39
misc_scripts/temp.sh Normal file
Просмотреть файл

@ -0,0 +1,39 @@
# # python3 metric_eval.py fashion_mnist mia
# # python3 metric_eval.py rot_mnist mia
# # python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --n_runs 3 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.1 --penalty_aug 0.1 --model_name resnet18 --ctr_model_name resnet18
# #python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --n_runs 3 --train_domains photo art_painting cartoon --test_domains sketch --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --lr 0.01 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.1 --penalty_aug 0.1 --model_name resnet18 --ctr_model_name resnet18
# #python train.py --dataset pacs --method_name hybrid --match_case -1 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --n_runs 3 --train_domains photo cartoon sketch --test_domains art_painting --out_classes 7 --perfect_match 0 --img_c 3 --pre_trained 1 --epochs 50 --lr 0.001 --batch_size 16 --weight_decay 0.001 --penalty_ws 0.1 --penalty_aug 0.1 --model_name resnet18 --ctr_model_name resnet18
# #python3 metric_eval.py fashion_mnist acc test
# #python3 metric_eval.py fashion_mnist match_score test
# #python3 metric_eval.py fashion_mnist mia
# python3 metric_eval.py fashion_mnist privacy_entropy
# #python3 metric_eval.py fashion_mnist attribute_attack
# #python3 metric_eval.py fashion_mnist privacy_loss_attack
# python train.py --dataset rot_mnist --method_name erm_match --match_case 0.0 --penalty_ws 0.0 --epochs 25
# python train.py --dataset rot_mnist --method_name erm_match --match_case 0.0 --penalty_ws 0.1 --epochs 25
# python train.py --dataset rot_mnist --method_name erm_match --match_case 0.25 --penalty_ws 0.1 --epochs 25
# python train.py --dataset rot_mnist --method_name erm_match --match_case 0.50 --penalty_ws 0.1 --epochs 25
# python train.py --dataset rot_mnist --method_name erm_match --match_case 0.75 --penalty_ws 0.1 --epochs 25
# python train.py --dataset rot_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --epochs 25
# python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.0 --penalty_ws 0.0 --epochs 25
# python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.0 --penalty_ws 0.1 --epochs 25
# python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.25 --penalty_ws 0.1 --epochs 25
# python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.50 --penalty_ws 0.1 --epochs 25
# python train.py --dataset fashion_mnist --method_name erm_match --match_case 0.75 --penalty_ws 0.1 --epochs 25
# python train.py --dataset fashion_mnist --method_name erm_match --match_case 1.0 --penalty_ws 0.1 --epochs 25
#python train.py --dataset rot_mnist --method_name irm --match_case 0.0 --penalty_irm 1.0 --penalty_s 5 --epochs 25
#python train.py --dataset rot_mnist --method_name csd --match_case 0.0 --penalty_ws 0.0 --epochs 25 --rep_dim 512
python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.0 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos
python train.py --dataset rot_mnist --method_name matchdg_erm --match_case -1 --penalty_ws 0.1 --epochs 25 --ctr_match_case 0.0 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18

19
misc_scripts/temp2.sh Normal file
Просмотреть файл

@ -0,0 +1,19 @@
# #MatchDG CTR Phase: RotMNIST
# python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 30 --batch_size 64 --pos_metric cos
# python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 1.0 --match_flag 1 --epochs 30 --batch_size 64 --pos_metric cos
# python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.01 --match_flag 0 --epochs 30 --batch_size 64 --pos_metric cos
# #MatchDG CTR Phase: FashionMNIST
# python train.py --dataset fashion_mnist --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 30 --batch_size 64 --pos_metric cos
# python train.py --dataset fashion_mnist --method_name matchdg_ctr --match_case 1.0 --match_flag 1 --epochs 30 --batch_size 64 --pos_metric cos
# python train.py --dataset fashion_mnist --method_name matchdg_ctr --match_case 0.01 --match_flag 0 --epochs 30 --batch_size 64 --pos_metric cos
python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.01 --match_flag 1 --epochs 100 --batch_size 128 --pos_metric cos
python train.py --dataset rot_mnist --method_name matchdg_erm --match_case -1 --penalty_ws 0.1 --epochs 25 --ctr_match_case 0.01 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18