Link to the privacy paper updated

This commit is contained in:
Divyat Mahajan 2022-03-20 15:15:32 -04:00 коммит произвёл GitHub
Родитель 17a13431f8
Коммит 3eee1730ae
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
1 изменённых файлов: 1 добавлений и 1 удалений

Просмотреть файл

@ -4,7 +4,7 @@ Toolkit for Building Robust ML models that generalize to unseen domains (RobustD
`Shruti Tople <https://www.microsoft.com/en-us/research/people/shtople/>`_,
`Amit Sharma <http://www.amitsharma.in>`_
`Privacy & Causal Learning (ICML 2020) <https://arxiv.org/abs/1909.12732>`_ | `MatchDG: Causal View of DG (ICML 2021) <http://proceedings.mlr.press/v139/mahajan21b.html>`_ | `Privacy & DG Connection paper <http://divy.at/privacy_dg.pdf>`_
`Privacy & Causal Learning (ICML 2020) <https://arxiv.org/abs/1909.12732>`_ | `MatchDG: Causal View of DG (ICML 2021) <http://proceedings.mlr.press/v139/mahajan21b.html>`_ | `Privacy & DG Connection paper <https://arxiv.org/abs/2110.03369>`_
For machine learning models to be reliable, they need to generalize to data
beyond the train distribution. In addition, ML models should be robust to