Link to the privacy paper updated
This commit is contained in:
Родитель
17a13431f8
Коммит
3eee1730ae
|
@ -4,7 +4,7 @@ Toolkit for Building Robust ML models that generalize to unseen domains (RobustD
|
|||
`Shruti Tople <https://www.microsoft.com/en-us/research/people/shtople/>`_,
|
||||
`Amit Sharma <http://www.amitsharma.in>`_
|
||||
|
||||
`Privacy & Causal Learning (ICML 2020) <https://arxiv.org/abs/1909.12732>`_ | `MatchDG: Causal View of DG (ICML 2021) <http://proceedings.mlr.press/v139/mahajan21b.html>`_ | `Privacy & DG Connection paper <http://divy.at/privacy_dg.pdf>`_
|
||||
`Privacy & Causal Learning (ICML 2020) <https://arxiv.org/abs/1909.12732>`_ | `MatchDG: Causal View of DG (ICML 2021) <http://proceedings.mlr.press/v139/mahajan21b.html>`_ | `Privacy & DG Connection paper <https://arxiv.org/abs/2110.03369>`_
|
||||
|
||||
For machine learning models to be reliable, they need to generalize to data
|
||||
beyond the train distribution. In addition, ML models should be robust to
|
||||
|
|
Загрузка…
Ссылка в новой задаче