Link to the privacy paper updated

This commit is contained in:
Divyat Mahajan 2022-03-20 15:15:32 -04:00 коммит произвёл GitHub
Родитель 17a13431f8
Коммит 3eee1730ae
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
1 изменённых файлов: 1 добавлений и 1 удалений

Просмотреть файл

@ -4,7 +4,7 @@ Toolkit for Building Robust ML models that generalize to unseen domains (RobustD
`Shruti Tople <https://www.microsoft.com/en-us/research/people/shtople/>`_, `Shruti Tople <https://www.microsoft.com/en-us/research/people/shtople/>`_,
`Amit Sharma <http://www.amitsharma.in>`_ `Amit Sharma <http://www.amitsharma.in>`_
`Privacy & Causal Learning (ICML 2020) <https://arxiv.org/abs/1909.12732>`_ | `MatchDG: Causal View of DG (ICML 2021) <http://proceedings.mlr.press/v139/mahajan21b.html>`_ | `Privacy & DG Connection paper <http://divy.at/privacy_dg.pdf>`_ `Privacy & Causal Learning (ICML 2020) <https://arxiv.org/abs/1909.12732>`_ | `MatchDG: Causal View of DG (ICML 2021) <http://proceedings.mlr.press/v139/mahajan21b.html>`_ | `Privacy & DG Connection paper <https://arxiv.org/abs/2110.03369>`_
For machine learning models to be reliable, they need to generalize to data For machine learning models to be reliable, they need to generalize to data
beyond the train distribution. In addition, ML models should be robust to beyond the train distribution. In addition, ML models should be robust to