update citation & fix broken url
This commit is contained in:
Родитель
a93180e85c
Коммит
8e14944f3c
11
README.md
11
README.md
|
@ -215,12 +215,13 @@ free to open a new issue.
|
|||
## Citations
|
||||
Please consider citing this project in your publications if it helps your research. The following is a BibTeX reference. The BibTeX entry requires the `url` LaTeX package.
|
||||
```
|
||||
@misc{han2021sgbenchmark,
|
||||
author = {Xiaotian Han and Jianwei Yang and Houdong Hu and Lei Zhang and Pengchuan Zhang},
|
||||
title = {{Scene Graph Benchmark}},
|
||||
@misc{han2021image,
|
||||
title={Image Scene Graph Generation (SGG) Benchmark},
|
||||
author={Xiaotian Han and Jianwei Yang and Houdong Hu and Lei Zhang and Jianfeng Gao and Pengchuan Zhang},
|
||||
year={2021},
|
||||
howpublished = {\url{https://github.com/microsoft/scene_graph_benchmark}},
|
||||
note = {Accessed: [Insert date here]}
|
||||
eprint={2107.12604},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.CV}
|
||||
}
|
||||
|
||||
```
|
||||
|
|
|
@ -10,13 +10,13 @@ All the following models are inferenced using unconstraint method, the detection
|
|||
|
||||
model | recall@50 | wmAP(Triplet) | mAP(Triplet) | wmAP(Phrase) | mAP(Phrase) | Triplet proposal recall | Phrase proposal recall | model | config
|
||||
-----------|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:
|
||||
IMP, no bias | 71.64 | 30.56 | 36.47 | 32.90 | 40.61 | 72.57 | 75.87 | [link](https://penzhanwu2.blob.core.windows.net/phillytools/data/maskrcnn/pretrained_model/sgg_model_zoo/oi_R152_imp_nobias.pth) | [link](sgg_configs/oi_vrd/R152FPN_imp_nobias_oi.yaml)
|
||||
IMP, bias | 71.81 | 30.88 | 45.97 | 33.25 | 50.42 | 72.81 | 76.04 | [link](https://penzhanwu2.blob.core.windows.net/phillytools/data/maskrcnn/pretrained_model/sgg_model_zoo/oi_R152_imp_bias.pth) | [link](sgg_configs/oi_vrd/R152FPN_imp_bias_oi.yaml)
|
||||
MSDN, no bias | 71.76 | 30.40 | 36.76 | 32.81 | 40.89 | 72.54 | 75.85 | [link](https://penzhanwu2.blob.core.windows.net/phillytools/data/maskrcnn/pretrained_model/sgg_model_zoo/oi_R152_msdn_nobias.pth) | [link](sgg_configs/oi_vrd/R152FPN_msdn_nobias_oi.yaml)
|
||||
MSDN, bias | 71.48 | 30.22 | 34.49 | 32.58 | 38.71 | 72.45 | 75.62 | [link](https://penzhanwu2.blob.core.windows.net/phillytools/data/maskrcnn/pretrained_model/sgg_model_zoo/oi_R152_msdn_bias.pth) | [link](sgg_configs/oi_vrd/R152FPN_msdn_bias_oi.yaml)
|
||||
Neural Motif, bias | 72.54 | 29.35 | 29.26 | 33.10 | 35.02 | 73.64 | 78.70 | [link](https://penzhanwu2.blob.core.windows.net/phillytools/data/maskrcnn/pretrained_model/sgg_model_zoo/oi_R152_nm.pth) | [link](sgg_configs/oi_vrd/R152FPN_motif_oi.yaml)
|
||||
GRCNN, bias | 74.17 | 34.73 | 39.56 | 37.04 | 43.63 | 74.11 | 77.32 | [link](https://penzhanwu2.blob.core.windows.net/phillytools/data/maskrcnn/pretrained_model/sgg_model_zoo/oi_R152_grcnn.pth) | [link](sgg_configs/oi_vrd/R152FPN_grcnn_oi.yaml)
|
||||
RelDN | 75.40 | 40.85 | 44.24 | 49.16 | 50.60 | 78.74 | 90.39 | [link](https://penzhanwu2.blob.core.windows.net/phillytools/data/maskrcnn/pretrained_model/sgg_model_zoo/oi_R152_reldn.pth) | [link](sgg_configs/oi_vrd/R152FPN_reldn_oi.yaml)
|
||||
IMP, no bias | 71.64 | 30.56 | 36.47 | 32.90 | 40.61 | 72.57 | 75.87 | [link](https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/sgg_model_zoo/oi_R152_imp_nobias.pth) | [link](sgg_configs/oi_vrd/R152FPN_imp_nobias_oi.yaml)
|
||||
IMP, bias | 71.81 | 30.88 | 45.97 | 33.25 | 50.42 | 72.81 | 76.04 | [link](https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/sgg_model_zoo/oi_R152_imp_bias.pth) | [link](sgg_configs/oi_vrd/R152FPN_imp_bias_oi.yaml)
|
||||
MSDN, no bias | 71.76 | 30.40 | 36.76 | 32.81 | 40.89 | 72.54 | 75.85 | [link](https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/sgg_model_zoo/oi_R152_msdn_nobias.pth) | [link](sgg_configs/oi_vrd/R152FPN_msdn_nobias_oi.yaml)
|
||||
MSDN, bias | 71.48 | 30.22 | 34.49 | 32.58 | 38.71 | 72.45 | 75.62 | [link](https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/sgg_model_zoo/oi_R152_msdn_bias.pth) | [link](sgg_configs/oi_vrd/R152FPN_msdn_bias_oi.yaml)
|
||||
Neural Motif, bias | 72.54 | 29.35 | 29.26 | 33.10 | 35.02 | 73.64 | 78.70 | [link](https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/sgg_model_zoo/oi_R152_nm.pth) | [link](sgg_configs/oi_vrd/R152FPN_motif_oi.yaml)
|
||||
GRCNN, bias | 74.17 | 34.73 | 39.56 | 37.04 | 43.63 | 74.11 | 77.32 | [link](https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/sgg_model_zoo/oi_R152_grcnn.pth) | [link](sgg_configs/oi_vrd/R152FPN_grcnn_oi.yaml)
|
||||
RelDN | 75.40 | 40.85 | 44.24 | 49.16 | 50.60 | 78.74 | 90.39 | [link](https://penzhanwu2.blob.core.windows.net/sgg/sgg_benchmark/sgg_model_zoo/oi_R152_reldn.pth) | [link](sgg_configs/oi_vrd/R152FPN_reldn_oi.yaml)
|
||||
|
||||
|
||||
### Visual Genome
|
||||
|
|
|
@ -113,6 +113,44 @@ def train(cfg, local_rank, distributed):
|
|||
return model
|
||||
|
||||
|
||||
def run_test(cfg, model, distributed):
|
||||
if distributed:
|
||||
model = model.module
|
||||
torch.cuda.empty_cache() # TODO check if it helps
|
||||
iou_types = ("bbox",)
|
||||
if cfg.MODEL.MASK_ON:
|
||||
iou_types = iou_types + ("segm",)
|
||||
if cfg.MODEL.KEYPOINT_ON:
|
||||
iou_types = iou_types + ("keypoints",)
|
||||
output_folders = [None] * len(cfg.DATASETS.TEST)
|
||||
dataset_names = cfg.DATASETS.TEST
|
||||
if cfg.OUTPUT_DIR:
|
||||
for idx, dataset_name in enumerate(dataset_names):
|
||||
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name)
|
||||
mkdir(output_folder)
|
||||
output_folders[idx] = output_folder
|
||||
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
|
||||
labelmap_file = config_dataset_file(cfg.DATA_DIR, cfg.DATASETS.LABELMAP_FILE)
|
||||
for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val):
|
||||
inference(
|
||||
model,
|
||||
cfg,
|
||||
data_loader_val,
|
||||
dataset_name=dataset_name,
|
||||
iou_types=iou_types,
|
||||
box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY,
|
||||
bbox_aug=cfg.TEST.BBOX_AUG.ENABLED,
|
||||
device=cfg.MODEL.DEVICE,
|
||||
expected_results=cfg.TEST.EXPECTED_RESULTS,
|
||||
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
|
||||
output_folder=output_folder,
|
||||
skip_performance_eval=cfg.TEST.SKIP_PERFORMANCE_EVAL,
|
||||
labelmap_file=labelmap_file,
|
||||
save_predictions=cfg.TEST.SAVE_PREDICTIONS,
|
||||
)
|
||||
synchronize()
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
|
||||
parser.add_argument(
|
||||
|
|
Загрузка…
Ссылка в новой задаче