# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2021 Microsoft Corporation. Licensed under the MIT license. r""" Basic training script for PyTorch """ # Set up custom environment before nearly anything else is imported # NOTE: this should be the first import (no not reorder) from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip import argparse import os import torch from maskrcnn_benchmark.config import cfg from scene_graph_benchmark.config import sg_cfg from maskrcnn_benchmark.data import make_data_loader from maskrcnn_benchmark.data.datasets.utils.load_files import config_dataset_file from maskrcnn_benchmark.solver import make_lr_scheduler from maskrcnn_benchmark.solver import make_optimizer, make_optimizer_d2 from maskrcnn_benchmark.engine.inference import inference from maskrcnn_benchmark.engine.trainer import do_train from maskrcnn_benchmark.modeling.detector import build_detection_model from scene_graph_benchmark.scene_parser import SceneParser from scene_graph_benchmark.AttrRCNN import AttrRCNN from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer from maskrcnn_benchmark.utils.collect_env import collect_env_info from maskrcnn_benchmark.utils.comm import synchronize, get_rank from maskrcnn_benchmark.utils.imports import import_file from maskrcnn_benchmark.utils.logger import setup_logger from maskrcnn_benchmark.utils.metric_logger import MetricLogger from maskrcnn_benchmark.utils.miscellaneous import mkdir, save_config from tools.test_sg_net import run_test import random import numpy as np torch.manual_seed(1000) torch.cuda.manual_seed(1000) torch.cuda.manual_seed_all(1000) # if you are using multi-GPU. np.random.seed(1000) # Numpy module. random.seed(1000) # Python random module. torch.manual_seed(1000) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True def train(cfg, local_rank, distributed): if cfg.MODEL.META_ARCHITECTURE == "SceneParser": model = SceneParser(cfg) elif cfg.MODEL.META_ARCHITECTURE == "AttrRCNN": model = AttrRCNN(cfg) device = torch.device(cfg.MODEL.DEVICE) model.to(device) if cfg.MODEL.BACKBONE.CONV_BODY.startswith("ViL"): optimizer = make_optimizer_d2(cfg, model) else: optimizer = make_optimizer(cfg, model) scheduler = make_lr_scheduler(cfg, optimizer) if distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, find_unused_parameters=True ) arguments = {} arguments["iteration"] = 0 output_dir = cfg.OUTPUT_DIR save_to_disk = get_rank() == 0 checkpointer = DetectronCheckpointer( cfg, model, optimizer, scheduler, output_dir, save_to_disk ) extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT) arguments.update(extra_checkpoint_data) data_loader = make_data_loader( cfg, is_train=True, is_distributed=distributed, start_iter=arguments["iteration"], ) test_period = cfg.SOLVER.TEST_PERIOD if test_period > 0: data_loader_val = make_data_loader(cfg, is_train=False, is_distributed=distributed, is_for_period=True) else: data_loader_val = None checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD meters = MetricLogger(delimiter=" ") do_train( cfg, model, data_loader, data_loader_val, optimizer, scheduler, checkpointer, device, checkpoint_period, test_period, arguments, meters ) return model def run_test(cfg, model, distributed): if distributed: model = model.module torch.cuda.empty_cache() # TODO check if it helps iou_types = ("bbox",) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm",) if cfg.MODEL.KEYPOINT_ON: iou_types = iou_types + ("keypoints",) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) labelmap_file = config_dataset_file(cfg.DATA_DIR, cfg.DATASETS.LABELMAP_FILE) for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val): inference( model, cfg, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY, bbox_aug=cfg.TEST.BBOX_AUG.ENABLED, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, skip_performance_eval=cfg.TEST.SKIP_PERFORMANCE_EVAL, labelmap_file=labelmap_file, save_predictions=cfg.TEST.SAVE_PREDICTIONS, ) synchronize() def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Training") parser.add_argument( "--config-file", default="", metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument( "--skip-test", dest="skip_test", help="Do not test the final model", action="store_true", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 args.distributed = num_gpus > 1 if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group( backend="nccl", init_method="env://" ) synchronize() cfg.set_new_allowed(True) cfg.merge_from_other_cfg(sg_cfg) cfg.set_new_allowed(False) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() output_dir = cfg.OUTPUT_DIR if output_dir: mkdir(output_dir) logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank()) logger.info("Using {} GPUs".format(num_gpus)) logger.info(args) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, "r") as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) output_config_path = os.path.join(cfg.OUTPUT_DIR, 'config.yml') logger.info("Saving config into: {}".format(output_config_path)) # save overloaded model config in the output directory save_config(cfg, output_config_path) model = train(cfg, args.local_rank, args.distributed) if not args.skip_test: run_test(cfg, model, args.distributed, model_name="model_final") if __name__ == "__main__": main()