enable task metrics in local mode, add tests

This commit is contained in:
Imran Rashid 2013-03-09 21:17:31 -08:00
Родитель ec30188a2a
Коммит 20f01a0a1b
2 изменённых файлов: 88 добавлений и 2 удалений

Просмотреть файл

@ -67,8 +67,10 @@ private[spark] class LocalScheduler(threads: Int, maxFailures: Int, sc: SparkCon
logInfo("Size of task " + idInJob + " is " + bytes.limit + " bytes")
val (taskFiles, taskJars, taskBytes) = Task.deserializeWithDependencies(bytes)
updateDependencies(taskFiles, taskJars) // Download any files added with addFile
val deserStart = System.currentTimeMillis()
val deserializedTask = ser.deserialize[Task[_]](
taskBytes, Thread.currentThread.getContextClassLoader)
val deserTime = System.currentTimeMillis() - deserStart
// Run it
val result: Any = deserializedTask.run(attemptId)
@ -77,15 +79,19 @@ private[spark] class LocalScheduler(threads: Int, maxFailures: Int, sc: SparkCon
// executor does. This is useful to catch serialization errors early
// on in development (so when users move their local Spark programs
// to the cluster, they don't get surprised by serialization errors).
val resultToReturn = ser.deserialize[Any](ser.serialize(result))
val serResult = ser.serialize(result)
deserializedTask.metrics.get.resultSize = serResult.limit()
val resultToReturn = ser.deserialize[Any](serResult)
val accumUpdates = ser.deserialize[collection.mutable.Map[Long, Any]](
ser.serialize(Accumulators.values))
logInfo("Finished " + task)
info.markSuccessful()
deserializedTask.metrics.get.executorRunTime = info.duration.toInt //close enough
deserializedTask.metrics.get.executorDeserializeTime = deserTime.toInt
// If the threadpool has not already been shutdown, notify DAGScheduler
if (!Thread.currentThread().isInterrupted)
listener.taskEnded(task, Success, resultToReturn, accumUpdates, info, null)
listener.taskEnded(task, Success, resultToReturn, accumUpdates, info, deserializedTask.metrics.getOrElse(null))
} catch {
case t: Throwable => {
logError("Exception in task " + idInJob, t)

Просмотреть файл

@ -0,0 +1,80 @@
package spark.scheduler
import org.scalatest.FunSuite
import spark.{SparkContext, LocalSparkContext}
import scala.collection.mutable
import org.scalatest.matchers.ShouldMatchers
import spark.SparkContext._
/**
*
*/
class SparkListenerSuite extends FunSuite with LocalSparkContext with ShouldMatchers {
test("local metrics") {
sc = new SparkContext("local[4]", "test")
val listener = new SaveStageInfo
sc.addSparkListener(listener)
sc.addSparkListener(new StatsReportListener)
val d = sc.parallelize(1 to 1e4.toInt, 64)
d.count
listener.stageInfos.size should be (1)
val d2 = d.map{i => i -> i * 2}.setName("shuffle input 1")
val d3 = d.map{i => i -> (0 to (i % 5))}.setName("shuffle input 2")
val d4 = d2.cogroup(d3, 64).map{case(k,(v1,v2)) => k -> (v1.size, v2.size)}
d4.setName("A Cogroup")
d4.collectAsMap
listener.stageInfos.size should be (4)
listener.stageInfos.foreach {stageInfo =>
//small test, so some tasks might take less than 1 millisecond, but average should be greater than 1 ms
checkNonZeroAvg(stageInfo.taskInfos.map{_._1.duration}, stageInfo + " duration")
checkNonZeroAvg(stageInfo.taskInfos.map{_._2.executorRunTime.toLong}, stageInfo + " executorRunTime")
checkNonZeroAvg(stageInfo.taskInfos.map{_._2.executorDeserializeTime.toLong}, stageInfo + " executorDeserializeTime")
if (stageInfo.stage.rdd.name == d4.name) {
checkNonZeroAvg(stageInfo.taskInfos.map{_._2.shuffleReadMetrics.get.fetchWaitTime}, stageInfo + " fetchWaitTime")
}
stageInfo.taskInfos.foreach{case (taskInfo, taskMetrics) =>
taskMetrics.resultSize should be > (0l)
if (isStage(stageInfo, Set(d2.name, d3.name), Set(d4.name))) {
taskMetrics.shuffleWriteMetrics should be ('defined)
taskMetrics.shuffleWriteMetrics.get.shuffleBytesWritten should be > (0l)
}
if (stageInfo.stage.rdd.name == d4.name) {
taskMetrics.shuffleReadMetrics should be ('defined)
val sm = taskMetrics.shuffleReadMetrics.get
sm.totalBlocksFetched should be > (0)
sm.shuffleReadMillis should be > (0l)
sm.localBlocksFetched should be > (0)
sm.remoteBlocksFetched should be (0)
sm.remoteBytesRead should be (0l)
sm.remoteFetchTime should be (0l)
}
}
}
}
def checkNonZeroAvg(m: Traversable[Long], msg: String) {
assert(m.sum / m.size.toDouble > 0.0, msg)
}
def isStage(stageInfo: StageInfo, rddNames: Set[String], excludedNames: Set[String]) = {
val names = Set(stageInfo.stage.rdd.name) ++ stageInfo.stage.rdd.dependencies.map{_.rdd.name}
!names.intersect(rddNames).isEmpty && names.intersect(excludedNames).isEmpty
}
class SaveStageInfo extends SparkListener {
val stageInfos = mutable.Buffer[StageInfo]()
def onStageCompleted(stage: StageCompleted) {
stageInfos += stage.stageInfo
}
}
}