Add connected components example to doc

This commit is contained in:
Ankur Dave 2014-01-12 16:58:18 -08:00
Родитель 5e35d39e0f
Коммит 7a4bb863c7
3 изменённых файлов: 21 добавлений и 7 удалений

Просмотреть файл

@ -475,6 +475,7 @@ GraphX includes a set of graph algorithms in to simplify analytics. The algorith
[Algorithms]: api/graphx/index.html#org.apache.spark.graphx.lib.Algorithms
## PageRank
<a name="pagerank"></a>
PageRank measures the importance of each vertex in a graph, assuming an edge from *u* to *v* represents an endorsement of *v*'s importance by *u*. For example, if a Twitter user is followed by many others, the user will be ranked highly.
@ -503,9 +504,26 @@ val ranksByUsername = users.leftOuterJoin(ranks).map {
println(ranksByUsername.collect().mkString("\n"))
{% endhighlight %}
## Connected Components
The connected components algorithm labels each connected component of the graph with the ID of its lowest-numbered vertex. For example, in a social network, connected components can approximate clusters. We can compute the connected components of the example social network dataset from the [PageRank section](#pagerank) as follows:
{% highlight scala %}
// Load the implicit conversion and graph as in the PageRank example
import org.apache.spark.graphx.lib._
val users = ...
val followers = ...
val graph = Graph(users, followers)
// Find the connected components
val cc = graph.connectedComponents().vertices
// Join the connected components with the usernames
val ccByUsername = graph.vertices.innerJoin(cc) { (id, username, cc) =>
(username, cc)
}
// Print the result
println(ccByUsername.collect().mkString("\n"))
{% endhighlight %}
## Shortest Path
## Triangle Counting

Просмотреть файл

@ -1,10 +1,6 @@
2 1
3 1
4 1
6 1
3 2
6 2
7 2
1 2
6 3
7 3
7 6

Просмотреть файл

@ -1,5 +1,5 @@
1 BarackObama
2 ericschmidt
2 ladygaga
3 jeresig
4 justinbieber
6 matei_zaharia