Add `pyspark` script to replace the other scripts.

Expand the PySpark programming guide.
This commit is contained in:
Josh Rosen 2013-01-01 21:25:49 -08:00
Родитель b58340dbd9
Коммит ce9f1bbe20
6 изменённых файлов: 69 добавлений и 36 удалений

Просмотреть файл

@ -24,6 +24,35 @@ There are a few key differences between the Python and Scala APIs:
- `sample`
- `sort`
In PySpark, RDDs support the same methods as their Scala counterparts but take Python functions and return Python collection types.
Short functions can be passed to RDD methods using Python's [`lambda`](http://www.diveintopython.net/power_of_introspection/lambda_functions.html) syntax:
{% highlight python %}
logData = sc.textFile(logFile).cache()
errors = logData.filter(lambda s: 'ERROR' in s.split())
{% endhighlight %}
You can also pass functions that are defined using the `def` keyword; this is useful for more complicated functions that cannot be expressed using `lambda`:
{% highlight python %}
def is_error(line):
return 'ERROR' in line.split()
errors = logData.filter(is_error)
{% endhighlight %}
Functions can access objects in enclosing scopes, although modifications to those objects within RDD methods will not be propagated to other tasks:
{% highlight python %}
error_keywords = ["Exception", "Error"]
def is_error(line):
words = line.split()
return any(keyword in words for keyword in error_keywords)
errors = logData.filter(is_error)
{% endhighlight %}
PySpark will automatically ship these functions to workers, along with any objects that they reference.
Instances of classes will be serialized and shipped to workers by PySpark, but classes themselves cannot be automatically distributed to workers.
The [Standalone Use](#standalone-use) section describes how to ship code dependencies to workers.
# Installing and Configuring PySpark
@ -34,13 +63,14 @@ By default, PySpark's scripts will run programs using `python`; an alternate Pyt
All of PySpark's library dependencies, including [Py4J](http://py4j.sourceforge.net/), are bundled with PySpark and automatically imported.
Standalone PySpark jobs should be run using the `run-pyspark` script, which automatically configures the Java and Python environmnt using the settings in `conf/spark-env.sh`.
Standalone PySpark jobs should be run using the `pyspark` script, which automatically configures the Java and Python environment using the settings in `conf/spark-env.sh`.
The script automatically adds the `pyspark` package to the `PYTHONPATH`.
# Interactive Use
PySpark's `pyspark-shell` script provides a simple way to learn the API:
The `pyspark` script launches a Python interpreter that is configured to run PySpark jobs.
When run without any input files, `pyspark` launches a shell that can be used explore data interactively, which is a simple way to learn the API:
{% highlight python %}
>>> words = sc.textFile("/usr/share/dict/words")
@ -48,9 +78,18 @@ PySpark's `pyspark-shell` script provides a simple way to learn the API:
[u'spar', u'sparable', u'sparada', u'sparadrap', u'sparagrass']
{% endhighlight %}
By default, the `pyspark` shell creates SparkContext that runs jobs locally.
To connect to a non-local cluster, set the `MASTER` environment variable.
For example, to use the `pyspark` shell with a [standalone Spark cluster](spark-standalone.html):
{% highlight shell %}
$ MASTER=spark://IP:PORT ./pyspark
{% endhighlight %}
# Standalone Use
PySpark can also be used from standalone Python scripts by creating a SparkContext in the script and running the script using the `run-pyspark` script in the `pyspark` directory.
PySpark can also be used from standalone Python scripts by creating a SparkContext in your script and running the script using `pyspark`.
The Quick Start guide includes a [complete example](quick-start.html#a-standalone-job-in-python) of a standalone Python job.
Code dependencies can be deployed by listing them in the `pyFiles` option in the SparkContext constructor:
@ -65,8 +104,8 @@ Code dependencies can be added to an existing SparkContext using its `addPyFile(
# Where to Go from Here
PySpark includes several sample programs using the Python API in `pyspark/examples`.
You can run them by passing the files to the `pyspark-run` script included in PySpark -- for example `./pyspark-run examples/wordcount.py`.
PySpark includes several sample programs using the Python API in `python/examples`.
You can run them by passing the files to the `pyspark` script -- for example `./pyspark python/examples/wordcount.py`.
Each example program prints usage help when run without any arguments.
We currently provide [API documentation](api/pyspark/index.html) for the Python API as Epydoc.

Просмотреть файл

@ -258,11 +258,11 @@ We can pass Python functions to Spark, which are automatically serialized along
For jobs that use custom classes or third-party libraries, we can add those code dependencies to SparkContext to ensure that they will be available on remote machines; this is described in more detail in the [Python programming guide](python-programming-guide).
`SimpleJob` is simple enough that we do not need to specify any code dependencies.
We can run this job using the `run-pyspark` script in `$SPARK_HOME/pyspark`:
We can run this job using the `pyspark` script:
{% highlight python %}
$ cd $SPARK_HOME
$ ./pyspark/run-pyspark SimpleJob.py
$ ./pyspark SimpleJob.py
...
Lines with a: 8422, Lines with b: 1836
{% endhighlight python %}

Просмотреть файл

@ -20,6 +20,10 @@ export PYSPARK_PYTHON
# Add the PySpark classes to the Python path:
export PYTHONPATH=$SPARK_HOME/python/:$PYTHONPATH
# Load the PySpark shell.py script when ./pyspark is used interactively:
export OLD_PYTHONSTARTUP=$PYTHONSTARTUP
export PYTHONSTARTUP=$FWDIR/python/pyspark/shell.py
# Launch with `scala` by default:
if [[ "$SPARK_LAUNCH_WITH_SCALA" != "0" ]] ; then
export SPARK_LAUNCH_WITH_SCALA=1

Просмотреть файл

@ -1,3 +0,0 @@
#!/usr/bin/env bash
FWDIR="`dirname $0`"
exec $FWDIR/run-pyspark $FWDIR/python/pyspark/shell.py "$@"

Просмотреть файл

@ -1,33 +1,17 @@
"""
An interactive shell.
"""
import optparse # I prefer argparse, but it's not included with Python < 2.7
import code
import sys
This fle is designed to be launched as a PYTHONSTARTUP script.
"""
import os
from pyspark.context import SparkContext
def main(master='local', ipython=False):
sc = SparkContext(master, 'PySparkShell')
user_ns = {'sc' : sc}
banner = "Spark context avaiable as sc."
if ipython:
import IPython
IPython.embed(user_ns=user_ns, banner2=banner)
else:
print banner
code.interact(local=user_ns)
sc = SparkContext(os.environ.get("MASTER", "local"), "PySparkShell")
print "Spark context avaiable as sc."
if __name__ == '__main__':
usage = "usage: %prog [options] master"
parser = optparse.OptionParser(usage=usage)
parser.add_option("-i", "--ipython", help="Run IPython shell",
action="store_true")
(options, args) = parser.parse_args()
if len(sys.argv) > 1:
master = args[0]
else:
master = 'local'
main(master, options.ipython)
# The ./pyspark script stores the old PYTHONSTARTUP value in OLD_PYTHONSTARTUP,
# which allows us to execute the user's PYTHONSTARTUP file:
_pythonstartup = os.environ.get('OLD_PYTHONSTARTUP')
if _pythonstartup and os.path.isfile(_pythonstartup):
execfile(_pythonstartup)

9
python/run-tests Executable file
Просмотреть файл

@ -0,0 +1,9 @@
#!/usr/bin/env bash
# Figure out where the Scala framework is installed
FWDIR="$(cd `dirname $0`; cd ../; pwd)"
$FWDIR/pyspark pyspark/rdd.py
$FWDIR/pyspark -m doctest pyspark/broadcast.py
# TODO: in the long-run, it would be nice to use a test runner like `nose`.