Added documentation to all the *RDDFunction classes, and moved them into

the spark package to make them more visible. Also documented various
other miscellaneous things in the API.
This commit is contained in:
Matei Zaharia 2012-10-09 18:38:36 -07:00
Родитель bc0bc672d0
Коммит ee2fcb2ce6
9 изменённых файлов: 273 добавлений и 54 удалений

Просмотреть файл

@ -1,39 +1,52 @@
package spark.rdd
package spark
import spark.partial.BoundedDouble
import spark.partial.MeanEvaluator
import spark.partial.PartialResult
import spark.partial.SumEvaluator
import spark.Logging
import spark.RDD
import spark.TaskContext
import spark.util.StatCounter
/**
* Extra functions available on RDDs of Doubles through an implicit conversion.
* Import `spark.SparkContext._` at the top of your program to use these functions.
*/
class DoubleRDDFunctions(self: RDD[Double]) extends Logging with Serializable {
/** Add up the elements in this RDD. */
def sum(): Double = {
self.reduce(_ + _)
}
/**
* Return a [[spark.util.StatCounter]] object that captures the mean, variance and count
* of the RDD's elements in one operation.
*/
def stats(): StatCounter = {
self.mapPartitions(nums => Iterator(StatCounter(nums))).reduce((a, b) => a.merge(b))
}
/** Compute the mean of this RDD's elements. */
def mean(): Double = stats().mean
/** Compute the variance of this RDD's elements. */
def variance(): Double = stats().variance
/** Compute the standard deviation of this RDD's elements. */
def stdev(): Double = stats().stdev
/**
* Compute the sample standard deviation of this RDD's elements (which corrects for bias in
* estimating the standard deviation by dividing by N-1 instead of N).
*/
def sampleStdev(): Double = stats().stdev
/** (Experimental) Approximate operation to return the mean within a timeout. */
def meanApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble] = {
val processPartition = (ctx: TaskContext, ns: Iterator[Double]) => StatCounter(ns)
val evaluator = new MeanEvaluator(self.splits.size, confidence)
self.context.runApproximateJob(self, processPartition, evaluator, timeout)
}
/** (Experimental) Approximate operation to return the sum within a timeout. */
def sumApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble] = {
val processPartition = (ctx: TaskContext, ns: Iterator[Double]) => StatCounter(ns)
val evaluator = new SumEvaluator(self.splits.size, confidence)

Просмотреть файл

@ -16,9 +16,12 @@ import spark.Logging
import spark.SerializableWritable
/**
* Saves an RDD using a Hadoop OutputFormat as specified by a JobConf. The JobConf should also
* contain an output key class, an output value class, a filename to write to, etc exactly like in
* a Hadoop job.
* An internal helper class that saves an RDD using a Hadoop OutputFormat. This is only public
* because we need to access this class from the `spark` package to use some package-private Hadoop
* functions, but this class should not be used directly by users.
*
* Saves the RDD using a JobConf, which should contain an output key class, an output value class,
* a filename to write to, etc, exactly like in a Hadoop MapReduce job.
*/
class HadoopWriter(@transient jobConf: JobConf) extends Logging with Serializable {

Просмотреть файл

@ -1,4 +1,4 @@
package spark.rdd
package spark
import java.io.EOFException
import java.io.ObjectInputStream
@ -36,27 +36,31 @@ import org.apache.hadoop.mapreduce.TaskAttemptContext
import spark.partial.BoundedDouble
import spark.partial.PartialResult
import spark.Aggregator
import spark.HashPartitioner
import spark.Logging
import spark.OneToOneDependency
import spark.Partitioner
import spark.RangePartitioner
import spark.RDD
import spark.SerializableWritable
import spark.rdd._
import spark.SparkContext._
import spark.SparkException
import spark.Split
import spark.TaskContext
/**
* Extra functions available on RDDs of (key, value) pairs through an implicit conversion.
* Import `spark.SparkContext._` at the top of your program to use these functions.
*/
class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
self: RDD[(K, V)])
extends Logging
with Serializable {
/**
* Generic function to combine the elements for each key using a custom set of aggregation
* functions. Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined type" C
* Note that V and C can be different -- for example, one might group an RDD of type
* (Int, Int) into an RDD of type (Int, Seq[Int]). Users provide three functions:
*
* - `createCombiner`, which turns a V into a C (e.g., creates a one-element list)
* - `mergeValue`, to merge a V into a C (e.g., adds it to the end of a list)
* - `mergeCombiners`, to combine two C's into a single one.
*
* In addition, users can control the partitioning of the output RDD, and whether to perform
* map-side aggregation (if a mapper can produce multiple items with the same key).
*/
def combineByKey[C](createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C,
@ -74,6 +78,9 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
new ShuffledAggregatedRDD(self, aggregator, partitioner)
}
/**
* Simplified version of combineByKey that hash-partitions the output RDD.
*/
def combineByKey[C](createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C,
@ -81,10 +88,20 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
combineByKey(createCombiner, mergeValue, mergeCombiners, new HashPartitioner(numSplits))
}
/**
* Merge the values for each key using an associative reduce function. This will also perform
* the merging locally on each mapper before sending results to a reducer, similarly to a
* "combiner" in MapReduce.
*/
def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = {
combineByKey[V]((v: V) => v, func, func, partitioner)
}
/**
* Merge the values for each key using an associative reduce function, but return the results
* immediately to the master as a Map. This will also perform the merging locally on each mapper
* before sending results to a reducer, similarly to a "combiner" in MapReduce.
*/
def reduceByKeyLocally(func: (V, V) => V): Map[K, V] = {
def reducePartition(iter: Iterator[(K, V)]): Iterator[JHashMap[K, V]] = {
val map = new JHashMap[K, V]
@ -106,22 +123,34 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
self.mapPartitions(reducePartition).reduce(mergeMaps)
}
// Alias for backwards compatibility
/** Alias for reduceByKeyLocally */
def reduceByKeyToDriver(func: (V, V) => V): Map[K, V] = reduceByKeyLocally(func)
// TODO: This should probably be a distributed version
/** Count the number of elements for each key, and return the result to the master as a Map. */
def countByKey(): Map[K, Long] = self.map(_._1).countByValue()
// TODO: This should probably be a distributed version
/**
* (Experimental) Approximate version of countByKey that can return a partial result if it does
* not finish within a timeout.
*/
def countByKeyApprox(timeout: Long, confidence: Double = 0.95)
: PartialResult[Map[K, BoundedDouble]] = {
self.map(_._1).countByValueApprox(timeout, confidence)
}
/**
* Merge the values for each key using an associative reduce function. This will also perform
* the merging locally on each mapper before sending results to a reducer, similarly to a
* "combiner" in MapReduce. Output will be hash-partitioned with numSplits splits.
*/
def reduceByKey(func: (V, V) => V, numSplits: Int): RDD[(K, V)] = {
reduceByKey(new HashPartitioner(numSplits), func)
}
/**
* Group the values for each key in the RDD into a single sequence. Allows controlling the
* partitioning of the resulting key-value pair RDD by passing a Partitioner.
*/
def groupByKey(partitioner: Partitioner): RDD[(K, Seq[V])] = {
def createCombiner(v: V) = ArrayBuffer(v)
def mergeValue(buf: ArrayBuffer[V], v: V) = buf += v
@ -131,16 +160,20 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
bufs.asInstanceOf[RDD[(K, Seq[V])]]
}
/**
* Group the values for each key in the RDD into a single sequence. Hash-partitions the
* resulting RDD with into `numSplits` partitions.
*/
def groupByKey(numSplits: Int): RDD[(K, Seq[V])] = {
groupByKey(new HashPartitioner(numSplits))
}
/**
* Repartition the RDD using the specified partitioner. If mapSideCombine is
* true, Spark will group values of the same key together on the map side
* before the repartitioning. If a large number of duplicated keys are
* expected, and the size of the keys are large, mapSideCombine should be set
* to true.
* Return a copy of the RDD partitioned using the specified partitioner. If `mapSideCombine`
* is true, Spark will group values of the same key together on the map side before the
* repartitioning, to only send each key over the network once. If a large number of
* duplicated keys are expected, and the size of the keys are large, `mapSideCombine` should
* be set to true.
*/
def partitionBy(partitioner: Partitioner, mapSideCombine: Boolean = false): RDD[(K, V)] = {
if (mapSideCombine) {
@ -155,6 +188,11 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
}
}
/**
* Merge the values for each key using an associative reduce function. This will also perform
* the merging locally on each mapper before sending results to a reducer, similarly to a
* "combiner" in MapReduce.
*/
def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] = {
this.cogroup(other, partitioner).flatMapValues {
case (vs, ws) =>
@ -162,6 +200,12 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
}
}
/**
* Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the
* resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the
* pair (k, (v, None)) if no elements in `other` have key k. Uses the given Partitioner to
* partition the output RDD.
*/
def leftOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, Option[W]))] = {
this.cogroup(other, partitioner).flatMapValues {
case (vs, ws) =>
@ -173,6 +217,12 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
}
}
/**
* Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the
* resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the
* pair (k, (None, w)) if no elements in `this` have key k. Uses the given Partitioner to
* partition the output RDD.
*/
def rightOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner)
: RDD[(K, (Option[V], W))] = {
this.cogroup(other, partitioner).flatMapValues {
@ -185,56 +235,117 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
}
}
def combineByKey[C](createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C) : RDD[(K, C)] = {
/**
* Simplified version of combineByKey that hash-partitions the resulting RDD using the default
* parallelism level.
*/
def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C)
: RDD[(K, C)] = {
combineByKey(createCombiner, mergeValue, mergeCombiners, defaultPartitioner(self))
}
/**
* Merge the values for each key using an associative reduce function. This will also perform
* the merging locally on each mapper before sending results to a reducer, similarly to a
* "combiner" in MapReduce. Output will be hash-partitioned with the default parallelism level.
*/
def reduceByKey(func: (V, V) => V): RDD[(K, V)] = {
reduceByKey(defaultPartitioner(self), func)
}
/**
* Group the values for each key in the RDD into a single sequence. Hash-partitions the
* resulting RDD with the default parallelism level.
*/
def groupByKey(): RDD[(K, Seq[V])] = {
groupByKey(defaultPartitioner(self))
}
/**
* Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each
* pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and
* (k, v2) is in `other`. Performs a hash join across the cluster.
*/
def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = {
join(other, defaultPartitioner(self, other))
}
/**
* Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each
* pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and
* (k, v2) is in `other`. Performs a hash join across the cluster.
*/
def join[W](other: RDD[(K, W)], numSplits: Int): RDD[(K, (V, W))] = {
join(other, new HashPartitioner(numSplits))
}
/**
* Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the
* resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the
* pair (k, (v, None)) if no elements in `other` have key k. Hash-partitions the output
* using the default level of parallelism.
*/
def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))] = {
leftOuterJoin(other, defaultPartitioner(self, other))
}
/**
* Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the
* resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the
* pair (k, (v, None)) if no elements in `other` have key k. Hash-partitions the output
* into `numSplits` partitions.
*/
def leftOuterJoin[W](other: RDD[(K, W)], numSplits: Int): RDD[(K, (V, Option[W]))] = {
leftOuterJoin(other, new HashPartitioner(numSplits))
}
/**
* Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the
* resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the
* pair (k, (None, w)) if no elements in `this` have key k. Hash-partitions the resulting
* RDD using the default parallelism level.
*/
def rightOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (Option[V], W))] = {
rightOuterJoin(other, defaultPartitioner(self, other))
}
/**
* Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the
* resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the
* pair (k, (None, w)) if no elements in `this` have key k. Hash-partitions the resulting
* RDD into the given number of partitions.
*/
def rightOuterJoin[W](other: RDD[(K, W)], numSplits: Int): RDD[(K, (Option[V], W))] = {
rightOuterJoin(other, new HashPartitioner(numSplits))
}
/**
* Return the key-value pairs in this RDD to the master as a Map.
*/
def collectAsMap(): Map[K, V] = HashMap(self.collect(): _*)
/**
* Pass each value in the key-value pair RDD through a map function without changing the keys;
* this also retains the original RDD's partitioning.
*/
def mapValues[U](f: V => U): RDD[(K, U)] = {
val cleanF = self.context.clean(f)
new MappedValuesRDD(self, cleanF)
}
/**
* Pass each value in the key-value pair RDD through a flatMap function without changing the
* keys; this also retains the original RDD's partitioning.
*/
def flatMapValues[U](f: V => TraversableOnce[U]): RDD[(K, U)] = {
val cleanF = self.context.clean(f)
new FlatMappedValuesRDD(self, cleanF)
}
/**
* For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
* list of values for that key in `this` as well as `other`.
*/
def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (Seq[V], Seq[W]))] = {
val cg = new CoGroupedRDD[K](
Seq(self.asInstanceOf[RDD[(_, _)]], other.asInstanceOf[RDD[(_, _)]]),
@ -246,6 +357,10 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
}
}
/**
* For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
* tuple with the list of values for that key in `this`, `other1` and `other2`.
*/
def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], partitioner: Partitioner)
: RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = {
val cg = new CoGroupedRDD[K](
@ -260,28 +375,46 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
}
}
/**
* For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
* list of values for that key in `this` as well as `other`.
*/
def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Seq[V], Seq[W]))] = {
cogroup(other, defaultPartitioner(self, other))
}
/**
* For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
* tuple with the list of values for that key in `this`, `other1` and `other2`.
*/
def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)])
: RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = {
cogroup(other1, other2, defaultPartitioner(self, other1, other2))
}
/**
* For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
* list of values for that key in `this` as well as `other`.
*/
def cogroup[W](other: RDD[(K, W)], numSplits: Int): RDD[(K, (Seq[V], Seq[W]))] = {
cogroup(other, new HashPartitioner(numSplits))
}
/**
* For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
* tuple with the list of values for that key in `this`, `other1` and `other2`.
*/
def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], numSplits: Int)
: RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = {
cogroup(other1, other2, new HashPartitioner(numSplits))
}
/** Alias for cogroup. */
def groupWith[W](other: RDD[(K, W)]): RDD[(K, (Seq[V], Seq[W]))] = {
cogroup(other, defaultPartitioner(self, other))
}
/** Alias for cogroup. */
def groupWith[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)])
: RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = {
cogroup(other1, other2, defaultPartitioner(self, other1, other2))
@ -298,6 +431,10 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
return new HashPartitioner(self.context.defaultParallelism)
}
/**
* Return the list of values in the RDD for key `key`. This operation is done efficiently if the
* RDD has a known partitioner by only searching the partition that the key maps to.
*/
def lookup(key: K): Seq[V] = {
self.partitioner match {
case Some(p) =>
@ -316,14 +453,26 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
}
}
/**
* Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class
* supporting the key and value types K and V in this RDD.
*/
def saveAsHadoopFile[F <: OutputFormat[K, V]](path: String)(implicit fm: ClassManifest[F]) {
saveAsHadoopFile(path, getKeyClass, getValueClass, fm.erasure.asInstanceOf[Class[F]])
}
/**
* Output the RDD to any Hadoop-supported file system, using a new Hadoop API `OutputFormat`
* (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD.
*/
def saveAsNewAPIHadoopFile[F <: NewOutputFormat[K, V]](path: String)(implicit fm: ClassManifest[F]) {
saveAsNewAPIHadoopFile(path, getKeyClass, getValueClass, fm.erasure.asInstanceOf[Class[F]])
}
/**
* Output the RDD to any Hadoop-supported file system, using a new Hadoop API `OutputFormat`
* (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD.
*/
def saveAsNewAPIHadoopFile(
path: String,
keyClass: Class[_],
@ -332,6 +481,10 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
saveAsNewAPIHadoopFile(path, keyClass, valueClass, outputFormatClass, new Configuration)
}
/**
* Output the RDD to any Hadoop-supported file system, using a new Hadoop API `OutputFormat`
* (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD.
*/
def saveAsNewAPIHadoopFile(
path: String,
keyClass: Class[_],
@ -379,6 +532,10 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
jobCommitter.cleanupJob(jobTaskContext)
}
/**
* Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class
* supporting the key and value types K and V in this RDD.
*/
def saveAsHadoopFile(
path: String,
keyClass: Class[_],
@ -394,6 +551,12 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
saveAsHadoopDataset(conf)
}
/**
* Output the RDD to any Hadoop-supported storage system, using a Hadoop JobConf object for
* that storage system. The JobConf should set an OutputFormat and any output paths required
* (e.g. a table name to write to) in the same way as it would be configured for a Hadoop
* MapReduce job.
*/
def saveAsHadoopDataset(conf: JobConf) {
val outputFormatClass = conf.getOutputFormat
val keyClass = conf.getOutputKeyClass
@ -436,21 +599,33 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest](
writer.cleanup()
}
def getKeyClass() = implicitly[ClassManifest[K]].erasure
private[spark] def getKeyClass() = implicitly[ClassManifest[K]].erasure
def getValueClass() = implicitly[ClassManifest[V]].erasure
private[spark] def getValueClass() = implicitly[ClassManifest[V]].erasure
}
/**
* Extra functions available on RDDs of (key, value) pairs where the key is sortable through
* an implicit conversion. Import `spark.SparkContext._` at the top of your program to use these
* functions. They will work with any key type that has a `scala.math.Ordered` implementation.
*/
class OrderedRDDFunctions[K <% Ordered[K]: ClassManifest, V: ClassManifest](
self: RDD[(K, V)])
extends Logging
with Serializable {
/**
* Sort the RDD by key, so that each partition contains a sorted range of the elements. Calling
* `collect` or `save` on the resulting RDD will return or output an ordered list of records
* (in the `save` case, they will be written to multiple `part-X` files in the filesystem, in
* order of the keys).
*/
def sortByKey(ascending: Boolean = true, numSplits: Int = self.splits.size): RDD[(K,V)] = {
new ShuffledSortedRDD(self, ascending, numSplits)
}
}
private[spark]
class MappedValuesRDD[K, V, U](prev: RDD[(K, V)], f: V => U) extends RDD[(K, U)](prev.context) {
override def splits = prev.splits
override val dependencies = List(new OneToOneDependency(prev))
@ -458,6 +633,7 @@ class MappedValuesRDD[K, V, U](prev: RDD[(K, V)], f: V => U) extends RDD[(K, U)]
override def compute(split: Split) = prev.iterator(split).map{case (k, v) => (k, f(v))}
}
private[spark]
class FlatMappedValuesRDD[K, V, U](prev: RDD[(K, V)], f: V => TraversableOnce[U])
extends RDD[(K, U)](prev.context) {

Просмотреть файл

@ -378,7 +378,8 @@ abstract class RDD[T: ClassManifest](@transient sc: SparkContext) extends Serial
}
/**
* Approximate version of count() that returns a potentially incomplete result after a timeout.
* (Experimental) Approximate version of count() that returns a potentially incomplete result
* within a timeout, even if not all tasks have finished.
*/
def countApprox(timeout: Long, confidence: Double = 0.95): PartialResult[BoundedDouble] = {
val countElements: (TaskContext, Iterator[T]) => Long = { (ctx, iter) =>
@ -394,13 +395,11 @@ abstract class RDD[T: ClassManifest](@transient sc: SparkContext) extends Serial
}
/**
* Return the count of each unique value in this RDD as a map of
* (value, count) pairs. The final combine step happens locally on the
* master, equivalent to running a single reduce task.
*
* TODO: This should perhaps be distributed by default.
* Return the count of each unique value in this RDD as a map of (value, count) pairs. The final
* combine step happens locally on the master, equivalent to running a single reduce task.
*/
def countByValue(): Map[T, Long] = {
// TODO: This should perhaps be distributed by default.
def countPartition(iter: Iterator[T]): Iterator[OLMap[T]] = {
val map = new OLMap[T]
while (iter.hasNext) {
@ -422,7 +421,7 @@ abstract class RDD[T: ClassManifest](@transient sc: SparkContext) extends Serial
}
/**
* Approximate version of countByValue().
* (Experimental) Approximate version of countByValue().
*/
def countByValueApprox(
timeout: Long,

Просмотреть файл

@ -1,4 +1,4 @@
package spark.rdd
package spark
import java.io.EOFException
import java.net.URL
@ -23,21 +23,21 @@ import org.apache.hadoop.io.NullWritable
import org.apache.hadoop.io.BytesWritable
import org.apache.hadoop.io.Text
import spark.Logging
import spark.RDD
import spark.SparkContext._
/**
* Extra functions available on RDDs of (key, value) pairs to create a Hadoop SequenceFile,
* through an implicit conversion. Note that this can't be part of PairRDDFunctions because
* we need more implicit parameters to convert our keys and values to Writable.
*
* Users should import `spark.SparkContext._` at the top of their program to use these functions.
*/
class SequenceFileRDDFunctions[K <% Writable: ClassManifest, V <% Writable : ClassManifest](
self: RDD[(K, V)])
extends Logging
with Serializable {
def getWritableClass[T <% Writable: ClassManifest](): Class[_ <: Writable] = {
private def getWritableClass[T <% Writable: ClassManifest](): Class[_ <: Writable] = {
val c = {
if (classOf[Writable].isAssignableFrom(classManifest[T].erasure)) {
classManifest[T].erasure
@ -49,6 +49,13 @@ class SequenceFileRDDFunctions[K <% Writable: ClassManifest, V <% Writable : Cla
c.asInstanceOf[Class[_ <: Writable]]
}
/**
* Output the RDD as a Hadoop SequenceFile using the Writable types we infer from the RDD's key
* and value types. If the key or value are Writable, then we use their classes directly;
* otherwise we map primitive types such as Int and Double to IntWritable, DoubleWritable, etc,
* byte arrays to BytesWritable, and Strings to Text. The `path` can be on any Hadoop-supported
* file system.
*/
def saveAsSequenceFile(path: String) {
def anyToWritable[U <% Writable](u: U): Writable = u

Просмотреть файл

@ -35,12 +35,8 @@ import spark.broadcast._
import spark.deploy.LocalSparkCluster
import spark.partial.ApproximateEvaluator
import spark.partial.PartialResult
import spark.rdd.DoubleRDDFunctions
import spark.rdd.HadoopRDD
import spark.rdd.NewHadoopRDD
import spark.rdd.OrderedRDDFunctions
import spark.rdd.PairRDDFunctions
import spark.rdd.SequenceFileRDDFunctions
import spark.rdd.UnionRDD
import spark.scheduler.ShuffleMapTask
import spark.scheduler.DAGScheduler

Просмотреть файл

@ -15,7 +15,7 @@ import spark.api.java.function.{Function2 => JFunction2}
import spark.api.java.function.{Function => JFunction}
import spark.partial.BoundedDouble
import spark.partial.PartialResult
import spark.rdd.OrderedRDDFunctions
import spark.OrderedRDDFunctions
import spark.storage.StorageLevel
import spark.HashPartitioner
import spark.Partitioner
@ -279,4 +279,4 @@ object JavaPairRDD {
new JavaPairRDD[K, V](rdd)
implicit def toRDD[K, V](rdd: JavaPairRDD[K, V]): RDD[(K, V)] = rdd.rdd
}
}

Просмотреть файл

@ -2,6 +2,13 @@ package spark.storage
import java.io.{Externalizable, ObjectInput, ObjectOutput}
/**
* Flags for controlling the storage of an RDD. Each StorageLevel records whether to use memory,
* whether to drop the RDD to disk if it falls out of memory, whether to keep the data in memory
* in a serialized format, and whether to replicate the RDD partitions on multiple nodes.
* The [[spark.storage.StorageLevel$]] singleton object contains some static constants for
* commonly useful storage levels.
*/
class StorageLevel(
var useDisk: Boolean,
var useMemory: Boolean,

Просмотреть файл

@ -2,10 +2,11 @@ package spark.util
/**
* A class for tracking the statistics of a set of numbers (count, mean and variance) in a
* numerically robust way. Includes support for merging two StatCounters. Based on Welford and
* Chan's algorithms described at http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
* numerically robust way. Includes support for merging two StatCounters. Based on
* [[http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance Welford and Chan's algorithms for running variance]].
*
* @constructor Initialize the StatCounter with the given values.
*/
private[spark]
class StatCounter(values: TraversableOnce[Double]) extends Serializable {
private var n: Long = 0 // Running count of our values
private var mu: Double = 0 // Running mean of our values
@ -13,8 +14,10 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
merge(values)
/** @constructor Initialize the StatCounter with no values. */
def this() = this(Nil)
/** Add a value into this StatCounter, updating the internal statistics. */
def merge(value: Double): StatCounter = {
val delta = value - mu
n += 1
@ -23,11 +26,13 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
this
}
/** Add multiple values into this StatCounter, updating the internal statistics. */
def merge(values: TraversableOnce[Double]): StatCounter = {
values.foreach(v => merge(v))
this
}
/** Merge another StatCounter into this one, adding up the internal statistics. */
def merge(other: StatCounter): StatCounter = {
if (other == this) {
merge(other.copy()) // Avoid overwriting fields in a weird order
@ -46,6 +51,7 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
}
}
/** Clone this StatCounter */
def copy(): StatCounter = {
val other = new StatCounter
other.n = n
@ -60,6 +66,7 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
def sum: Double = n * mu
/** Return the variance of the values. */
def variance: Double = {
if (n == 0)
Double.NaN
@ -67,6 +74,10 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
m2 / n
}
/**
* Return the sample variance, which corrects for bias in estimating the variance by dividing
* by N-1 instead of N.
*/
def sampleVariance: Double = {
if (n <= 1)
Double.NaN
@ -74,8 +85,13 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
m2 / (n - 1)
}
/** Return the standard deviation of the values. */
def stdev: Double = math.sqrt(variance)
/**
* Return the sample standard deviation of the values, which corrects for bias in estimating the
* variance by dividing by N-1 instead of N.
*/
def sampleStdev: Double = math.sqrt(sampleVariance)
override def toString: String = {
@ -83,8 +99,10 @@ class StatCounter(values: TraversableOnce[Double]) extends Serializable {
}
}
private[spark] object StatCounter {
object StatCounter {
/** Build a StatCounter from a list of values. */
def apply(values: TraversableOnce[Double]) = new StatCounter(values)
/** Build a StatCounter from a list of values passed as variable-length arguments. */
def apply(values: Double*) = new StatCounter(values)
}