Mirror of Apache Spark
Перейти к файлу
Cheng Lian f6ff2a61d0 [SPARK-2410][SQL] Merging Hive Thrift/JDBC server
(This is a replacement of #1399, trying to fix potential `HiveThriftServer2` port collision between parallel builds. Please refer to [these comments](https://github.com/apache/spark/pull/1399#issuecomment-50212572) for details.)

JIRA issue: [SPARK-2410](https://issues.apache.org/jira/browse/SPARK-2410)

Merging the Hive Thrift/JDBC server from [branch-1.0-jdbc](https://github.com/apache/spark/tree/branch-1.0-jdbc).

Thanks chenghao-intel for his initial contribution of the Spark SQL CLI.

Author: Cheng Lian <lian.cs.zju@gmail.com>

Closes #1600 from liancheng/jdbc and squashes the following commits:

ac4618b [Cheng Lian] Uses random port for HiveThriftServer2 to avoid collision with parallel builds
090beea [Cheng Lian] Revert changes related to SPARK-2678, decided to move them to another PR
21c6cf4 [Cheng Lian] Updated Spark SQL programming guide docs
fe0af31 [Cheng Lian] Reordered spark-submit options in spark-shell[.cmd]
199e3fb [Cheng Lian] Disabled MIMA for hive-thriftserver
1083e9d [Cheng Lian] Fixed failed test suites
7db82a1 [Cheng Lian] Fixed spark-submit application options handling logic
9cc0f06 [Cheng Lian] Starts beeline with spark-submit
cfcf461 [Cheng Lian] Updated documents and build scripts for the newly added hive-thriftserver profile
061880f [Cheng Lian] Addressed all comments by @pwendell
7755062 [Cheng Lian] Adapts test suites to spark-submit settings
40bafef [Cheng Lian] Fixed more license header issues
e214aab [Cheng Lian] Added missing license headers
b8905ba [Cheng Lian] Fixed minor issues in spark-sql and start-thriftserver.sh
f975d22 [Cheng Lian] Updated docs for Hive compatibility and Shark migration guide draft
3ad4e75 [Cheng Lian] Starts spark-sql shell with spark-submit
a5310d1 [Cheng Lian] Make HiveThriftServer2 play well with spark-submit
61f39f4 [Cheng Lian] Starts Hive Thrift server via spark-submit
2c4c539 [Cheng Lian] Cherry picked the Hive Thrift server
2014-07-27 13:03:38 -07:00
assembly
bagel
bin
conf
core
data/mllib
dev
docker
docs
ec2
examples
external
extras
graphx
mllib
project
python
repl
sbin
sbt
sql
streaming
tools
yarn
.gitignore
.rat-excludes
.travis.yml
LICENSE
NOTICE
README.md
make-distribution.sh
pom.xml
scalastyle-config.xml
tox.ini

README.md

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLLib for machine learning, GraphX for graph processing, and Spark Streaming.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

(You do not need to do this if you downloaded a pre-built package.)

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting -Dhadoop.version when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ sbt/sbt -Dhadoop.version=1.2.1 assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ sbt/sbt -Dhadoop.version=2.0.0-mr1-cdh4.2.0 assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set -Pyarn:

# Apache Hadoop 2.0.5-alpha
$ sbt/sbt -Dhadoop.version=2.0.5-alpha -Pyarn assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ sbt/sbt -Dhadoop.version=2.0.0-cdh4.2.0 -Pyarn assembly

# Apache Hadoop 2.2.X and newer
$ sbt/sbt -Dhadoop.version=2.2.0 -Pyarn assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.