strategically_efficient_rl/plot_runs_tfevent.py

178 строки
6.2 KiB
Python
Исходник Постоянная ссылка Обычный вид История

2021-05-03 02:10:46 +03:00
#!/usr/bin/env python3
'''
Utility script for generating plots from data stored in RLLib-generated tfevent files
'''
import argparse
import os
import matplotlib.pyplot as plot
import matplotlib.patches as patches
import matplotlib.cm as colors
import numpy as np
import scipy
import scipy.stats
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppress unnecessary error messages
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
def parse_args():
parser = argparse.ArgumentParser("Generates a plot of a set of RLLib experiments for the specified metrics.")
parser.add_argument("experiments", type=str, nargs="*",
help="labels and directories of experiments to plot (label1 dir1 label2 dir2 ...)")
parser.add_argument("--output", default="mean_return", type=str,
help="path to the image file where the plot will be saved")
parser.add_argument("--x-axis", default="timesteps_total", type=str,
help="column name for x-axis values")
parser.add_argument("--y-axis", default="episode_reward_mean", type=str,
help="column name for y-axis values")
parser.add_argument("--x-label", default="time steps", type=str,
help="label for the x-axis")
parser.add_argument("--y-label", default="mean episode return", type=str,
help="label for the y-axis")
parser.add_argument("--title", default="Mean Episode Return", type=str,
help="title for the plot to be generated")
parser.add_argument("--errors", default="range", type=str,
help="error values to plot as shaded regions \{'range', 'deviation', 'error', 'None'\}")
return parser.parse_args()
def load_experiments(args, x_axis, y_axis):
if len(args) % 2 != 0:
raise Error("Must provide a label for each experiment")
print("\n\n----- Loading Experiments -----")
experiments = dict()
x_axis = "ray/tune/" + x_axis
y_axis = "ray/tune/" + y_axis
for index in range(0, len(args), 2):
directory = args[index + 1]
runs = []
if not os.path.isdir(directory):
raise Exception(f"Experiment directory {directory} does not exist")
for path in os.listdir(directory):
path = os.path.join(directory, path)
if os.path.isdir(path):
for sub_path in os.listdir(path):
sub_path = os.path.join(path, sub_path)
if os.path.isfile(sub_path) and os.path.basename(sub_path).startswith("events.out.tfevents"):
accumulator = EventAccumulator(sub_path)
accumulator.Reload()
if x_axis in accumulator.scalars.Keys():
x_values = [event.value for event in accumulator.Scalars(x_axis)]
y_values = [event.value for event in accumulator.Scalars(y_axis)]
runs.append((x_values, y_values))
print(f"Experiment: {args[index]}, {len(runs)} runs")
if len(runs) > 0:
experiments[args[index]] = runs
print("---------------\n")
return experiments
if __name__ == "__main__":
args = parse_args()
# Load experiment data
experiments = load_experiments(args.experiments, args.x_axis, args.y_axis)
# Plot results
color_map = colors.get_cmap("tab20").colors
legend_entries = []
y_min = np.infty
y_max = -np.infty
plot.clf()
for index, (label, runs) in enumerate(experiments.items()):
if len(runs) > 0:
# Adjust x-axes to match the y-axis, which may not have as many values
x_axes = []
y_axes = []
for run_idx, run in enumerate(runs):
interval = len(run[0]) // len(run[1])
x_axes.append(np.asarray(run[0])[(interval - 1)::interval])
y_axes.append(run[1])
# Compute minimum run length
min_length = min([len(y) for y in y_axes])
# Define x-axis
x_axis = x_axes[0][0:min_length]
# Construct data series and compute means
series = [y[0:min_length] for y in y_axes]
# Convert series data to a single numpy array
series = np.asarray(series, dtype=np.float32)
means = np.mean(series, axis=0)
# Update ranges
y_min = min(y_min, np.min(series))
y_max = max(y_max, np.max(series))
# Compute error bars
if "range" == args.errors:
upper = np.max(series, axis=0)
lower = np.min(series, axis=0)
elif "deviation" == args.errors:
std = np.std(series, axis=0, ddof=1)
upper = means + std
lower = means - std
elif "error" == args.errors:
error = scipy.stats.sem(series, axis=0, ddof=1)
upper = means + error
lower = means - error
else:
upper = means
lower = means
# Plot series
plot.plot(x_axis, means, color=color_map[2 * index], alpha=1.0)
plot.fill_between(x_axis, lower, upper, color=color_map[2 * index + 1], alpha=0.3)
# Add a legend entry even if there were no non-empty data series
legend_entries.append(patches.Patch(color=color_map[2 * index], label=label))
# Set ranges
if y_min > y_max: # No data, set an arbitrary range
y_min = 0.0
y_max = 100.0
elif 0.0 == y_min and 0.0 == y_max: # All data is zero, set and arbitrary range
y_min = -100.0
y_max = 100.0
elif y_min > 0.0: # All values positive, set range from 0 to 120% of max
y_min = 0.0
y_max *= 1.2
elif y_max < 0.0: # All values negative, set range from 120% of min to 0
y_min *= 1.2
y_max = 0.0
else: # Both positive and negative values, expand range by 20%
y_min *= 1.2
y_max *= 1.2
# Create plot
plot.legend(handles=legend_entries)
plot.title(args.title)
plot.xlabel(args.x_label)
plot.ylabel(args.y_label)
plot.ylim(bottom=y_min, top=y_max)
plot.savefig(args.output, bbox_inches="tight")