strategically_efficient_rl/visualize_gym_atari.py

175 строки
5.2 KiB
Python
Исходник Постоянная ссылка Обычный вид История

2021-05-03 02:10:46 +03:00
#!/usr/bin/env python3
'''
Script for visualizing learned policies in the gym Atari environment.
'''
import argparse
from collections import defaultdict
import gym
import importlib
import numpy as np
import os
import pickle
import time
import ray
from ray.tune.registry import get_trainable_cls
from supersuit import frame_stack_v1, color_reduction_v0, resize_v0, normalize_obs_v0, dtype_v0
import algorithms
import environments
class RLLibPolicy:
""" Represents a single policy contained in an RLLib Trainer """
def __init__(self, trainer, policy_id):
self._trainer = trainer
self._policy_id = policy_id
# Get the local policy object for the given ID
policy = trainer.get_policy(policy_id)
# Sample an action from the action space for this policy to act as the previous action for the first step
self._initial_action = 0
# Get the initial state for a recurrent policy if needed
initial_rnn_state = policy.get_initial_state()
if initial_rnn_state is not None and len(initial_rnn_state) > 0:
self._initial_rnn_state = initial_rnn_state
else:
self._initial_rnn_state = None
# Initialize the policy - only affects the wrapper, not the underlying policy
self.reset()
def reset(self):
self._prev_action = self._initial_action
self._prev_rnn_state = self._initial_rnn_state
def action(self, obs, prev_reward=0.0):
if self._initial_rnn_state is not None:
self._prev_action, self._prev_state, _ = self._trainer.compute_action(obs,
state=self._prev_rnn_state,
prev_action=self._prev_action,
prev_reward=prev_reward,
policy_id=self._policy_id)
else:
self._prev_action = self._trainer.compute_action(obs,
prev_action=self._prev_action,
prev_reward=prev_reward,
policy_id=self._policy_id)
return self._prev_action
def load_last_checkpoint(run, trainer_cls):
# Build trainable with appropriate configuration
with open(os.path.join(run, "params.pkl"), "rb") as f:
config = pickle.load(f)
config["num_workers"] = 0
config["num_gpus"] = 0
# Because RLLib is stupid, a log directory is required even when we are using a NoopLogger
trainer = trainer_cls(config=config)
# Get checkpoint IDs
checkpoint_ids = []
for obj in os.listdir(run):
if obj.startswith("checkpoint_"):
checkpoint_ids.append(int(obj[11:]))
checkpoint_ids.sort()
# Load final checkpoint
checkpoint = str(checkpoint_ids[-1])
# Don't restore, see if this affects the trainer config
checkpoint = os.path.join(run, "checkpoint_" + checkpoint, "checkpoint-" + checkpoint)
trainer.restore(checkpoint)
return trainer, config
def parse_args():
parser = argparse.ArgumentParser("Visualizes a set of trained policies in the Gym Atari environments")
parser.add_argument("trial", type=str,
help="path to the training run to visualize")
parser.add_argument("-a", "--alg", type=str, default="PPO",
help="name of the Trainable class from which the checkpoints were generated")
parser.add_argument("-e", "--episodes", type=int, default=20,
help="the number of episodes to roll out")
return parser.parse_args()
def main(args):
# Initialize ray
ray.init(num_cpus=1)
# Get trainable class
trainer_cls = get_trainable_cls(args.alg)
trainer, config = load_last_checkpoint(args.trial, trainer_cls)
# Get environment config
env_config = config["env_config"].copy()
env_name = env_config.pop("game")
frame_stack = env_config.pop("frame_stack", 4)
color_reduction = env_config.pop("color_reduction", True)
agent_id = env_config.pop("agent_id", "first_0")
# Build Atari environment
env = gym.make(env_name)
# Wrap environment in preprocessors
wrapped_env = env
if color_reduction:
wrapped_env = color_reduction_v0(wrapped_env, mode='full')
wrapped_env = resize_v0(wrapped_env, 84, 84)
wrapped_env = dtype_v0(wrapped_env, dtype=np.float32)
wrapped_env = frame_stack_v1(wrapped_env, frame_stack)
wrapped_env = normalize_obs_v0(wrapped_env, env_min=0, env_max=1)
# Reset environment
obs = wrapped_env.reset()
env.render()
# Initialize policies
policy = RLLibPolicy(trainer, f"policy_{agent_id}")
# Roll-out and visualize policies
step = 0
episode = 0
while episode < args.episodes:
print(f"episode {episode}, step {step}")
step += 1
action = policy.action(obs)
obs, reward, done, info = wrapped_env.step(action)
# Render environment
env.render()
time.sleep(0.01)
# Reset if necessary
if done:
obs = wrapped_env.reset()
episode += 1
if __name__ == '__main__':
args = parse_args()
main(args)