Updating instructions for running ABC models
This commit is contained in:
Родитель
d1279f862c
Коммит
477c1fddf7
53
README.md
53
README.md
|
@ -17,13 +17,13 @@ Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Judah Cohen, Miruna O
|
|||
|
||||
and the machine learning models and meteorological baselines of
|
||||
|
||||
[Learned Benchmarks for Subseasonal Forecasting](https://arxiv.org/pdf/2109.10399.pdf)
|
||||
[SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and Benchmarking](https://arxiv.org/pdf/2109.10399.pdf)
|
||||
Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah Cohen, Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam Levang, Ernest Fraenkel, and Lester Mackey. Sep. 2021.
|
||||
|
||||
```
|
||||
@article{
|
||||
mouatadid2021toolkit,
|
||||
title={Learned Benchmarks for Subseasonal Forecasting},
|
||||
title={SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and Benchmarking},
|
||||
author={Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah Cohen, Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam Levang, Ernest Fraenkel, and Lester Mackey},
|
||||
journal={arXiv preprint arXiv:2109.10399},
|
||||
year={2021}
|
||||
|
@ -58,25 +58,70 @@ A complete list of Python dependencies can be found in `setup.cfg`; these depend
|
|||
|
||||
## Generating Model Forecasts
|
||||
|
||||
The following examples demonstrate how to generate contiguous US forecasts for the target dates evaluated in "Adaptive Bias Correction for Subseasonal Forecasting" or "Learned Benchmarks for Subseasonal Forecasting" using each implemented model.
|
||||
The following examples demonstrate how to generate contiguous US forecasts for the target dates evaluated in "Adaptive Bias Correction for Subseasonal Forecasting" or "SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and Benchmarking" using each implemented model.
|
||||
|
||||
- ABC-CCSM4:
|
||||
- Generate predictions for each Climatology++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp`
|
||||
- Generate predictions for each CCSM4++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m ccsm4pp`
|
||||
- Run ABC
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m ccsm4`
|
||||
- ABC-CFSv2:
|
||||
- Generate predictions for each Climatology++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp`
|
||||
- Generate predictions for each CFSv2++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m cfsv2pp`
|
||||
- Run ABC
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m cfsv2`
|
||||
- ABC-ECMWF:
|
||||
- Generate predictions for each Climatology++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp`
|
||||
- Generate predictions for each ECMWF++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m ecmwfpp`
|
||||
- Run ABC
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m ecmwf`
|
||||
- ABC-FIMr1p1:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m fimr1p1pp`
|
||||
- Generate predictions for each Climatology++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp`
|
||||
- Generate predictions for each FIMr1p1++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m fimr1p1pp`
|
||||
- Run ABC
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m fimr1p1`
|
||||
- ABC-GEFS:
|
||||
- Generate predictions for each Climatology++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp`
|
||||
- Generate predictions for each GEFS++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m gefspp`
|
||||
- Run ABC
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m gefs`
|
||||
- ABC-GEMS:
|
||||
- Generate predictions for each Climatology++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp`
|
||||
- Generate predictions for each GEMS++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m gemspp`
|
||||
- Run ABC
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m gems`
|
||||
- ABC-GEOS_v2p1:
|
||||
- Generate predictions for each Climatology++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp`
|
||||
- Generate predictions for each GEOS_v2p1++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m geos_v2p1pp`
|
||||
- Run ABC
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m geos_v2p1`
|
||||
- ABC-NESM:
|
||||
- Generate predictions for each Climatology++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp`
|
||||
- Generate predictions for each NESM++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m nesmpp`
|
||||
- Run ABC
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m nesm`
|
||||
- ABC-SubX:
|
||||
- Generate predictions for each Climatology++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp`
|
||||
- Generate predictions for each SubX++ model configuration
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m subx_meanpp`
|
||||
- Run ABC
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper_forecast -e -u -a -m subx_mean`
|
||||
- AutoKNN:
|
||||
`python -m subseasonal_toolkit.generate_predictions -t std_paper -u -m autoknn`
|
||||
|
|
|
@ -6,7 +6,17 @@
|
|||
"source": [
|
||||
"# ABC\n",
|
||||
"\n",
|
||||
"Adaptive Bias Correction combining dynamical model forecasts, lagged measurements, and climatology."
|
||||
"Adaptive Bias Correction combining dynamical model forecasts, lagged measurements, and climatology.\n",
|
||||
"\n",
|
||||
"**Note:** This script will call `batch_predict` and `batch_metrics` for any ABC ensemble member \n",
|
||||
" (perpp, tuned_climpp, or tuned_{forecast}pp) that is missing RMSE metrics for the \n",
|
||||
" given target_dates. However, it does not call `bulk_batch_predict` for climpp or\n",
|
||||
" {forecast}pp, so please ensure that all submodels have been generated for climpp\n",
|
||||
" {forecast}pp prior to calling this script, for example, by using the commands: \n",
|
||||
" \n",
|
||||
" `python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp`\n",
|
||||
" \n",
|
||||
" `python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m ecmwfpp`"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
|
@ -12,6 +12,15 @@
|
|||
# --forecast (-f): include the forecasts of this dynamical model as features;
|
||||
# examples: "cfsv2" or "ecmwf" for standard models, "ecmwf:c" or "ecmwf:p1"
|
||||
# for ECMWF control or single perturbation submodels (default: "cfsv2")
|
||||
#
|
||||
# Side effects:
|
||||
# This script will call batch_predict and batch_metrics for any ABC ensemble member
|
||||
# (perpp, tuned_climpp, or tuned_{forecast}pp) that is missing RMSE metrics for the
|
||||
# given target_dates. However, it does not call bulk_batch_predict for climpp or
|
||||
# {forecast}pp, so please ensure that all submodels have been generated for climpp
|
||||
# {forecast}pp prior to calling this script, for example, by using the commands:
|
||||
# python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m climpp
|
||||
# python -m subseasonal_toolkit.generate_predictions -t std_paper_eval -e -u -b -m ecmwfpp
|
||||
|
||||
import os
|
||||
from subseasonal_toolkit.utils.notebook_util import call_notebook
|
||||
|
|
Загрузка…
Ссылка в новой задаче